

PHP Succinctly

By

José Roberto Olivas Mendoza

Foreword by Daniel Jebaraj

 3

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: John Elderkin

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books ... 8

About the Author ..10

Who Is This Book For? ...11

Chapter 1 An Introduction to PHP ..12

What is PHP? ...12

Chapter summary ...13

Chapter 2 Deploying PHP ..14

Installing PHP in a Windows environment ..14

Prerequisites ..14

Installation process ..14

Testing the installation process ..32

Testing in the local computer ...33

Testing from a remote computer ..33

Chapter summary ...34

Chapter 3 PHP Basics ..36

Script: The basic concept of PHP ...36

What is a script? ..36

Script samples ...36

Variables ..40

Declaring and using variables in PHP ..40

Variable types ..41

Variable scopes ...42

Predefined variables ..44

 5

Constants ...46

Naming constants ..46

Defining constants ...46

Operators ...47

Arithmetic operators ...47

Comparison operators ...48

Logical operators ...48

Assignment operators ..49

Conditional operator ..50

Precedence of operators in PHP ..50

Strings ..52

Arrays ...53

Decision making ...54

If elseif … else ...54

Switch statement ...55

Loops ...56

Continue and break special keywords ..58

Chapter summary ...59

Chapter 4 Functions and File Inclusion ..62

User-defined functions ..62

Function definition ..62

Creating functions ..62

Employing parameters ...62

Returning values from a function ...63

Defining default values for parameters in a function ...64

Calling functions dynamically ...64

 6

Built-in functions ...66

Array functions ...67

Date and time functions ...67

String functions ..68

Character functions ..68

File system functions ...68

Directory functions ...69

File inclusion ..69

Chapter summary ...71

Chapter 5 Files and Databases ...73

Managing Files with PHP ...73

Reading a file ...73

Writing text to a file ..74

Connecting to MySQL databases ...75

Prerequisites ..75

Installing MySQL in the local computer ..75

Using MySQL Workbench to create a database...84

Our first database connection ..88

Inserting a row in the contacts table ...89

Inserting data using parameters ...90

Querying the contacts table ...92

Displaying contacts in a webpage ..94

Chapter summary ...97

Chapter 6 A Contact List Website ...99

Website entry point: index.php ... 100

Creating a basic HTML structure ... 100

 7

Creating the website header .. 101

Creating the website toolbar .. 102

Creating the website footer .. 103

Creating the data table section ... 105

Creating the Add New Contact dialog box .. 108

The result: A functional Personal Contact List Website ... 113

Chapter summary ... 114

Chapter 7 General Summary ... 115

General Conclusions .. 119

 8

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 9

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 10

About the Author

I’m an IT businesses entrepreneur, a software developer, and a huge technology fan. My
company went to market in 1990 focused primarily on custom software development. We
started with COBOL as our main programming language and over the years we’ve been
evolving up to .NET and Office technologies. Throughout this time, some of my core activities
have been research about cutting edge technologies, and searching for new tools which can
help us to automate some or all process regarding our products development lifecycle.

In 2010, electronic invoicing was set as a requirement for business transactions in Mexico. This
event forced us not only to upgrade all our business-related products, but also to change our
development paradigm. At that time, we had been focusing only on desktop applications
development. But, electronic invoicing involved a series of services which should be delivered
over the Internet, such as an electronic documents downloading site. That situation led us to
web applications development.

As a Research Manager, I was responsible for choosing which technologies should be
employed for web applications development. Because we’d been mostly focused on Microsoft
technology, the first thing that came up was ASP.NET. Unfortunately, the company’s crew
members were not well trained in such technology (at that time), and there weren’t candidates in
the market to be hired.

I found out that the most of potential candidates to be employed as a web developers were
focused on PHP language, so I started a research about it. The results obtained from this
investigation made me choose PHP as our primary web development programming language: it
is a widely used language in the web development world, there are a pool of developers far
larger than ASP.NET, there are a large series of online communities and forums to look for
answers to problems, and finally, the fact that the language is open source and it is supported
by many web hosting service providers.

As we’ve been going further into the web world, we realized that there’s no unique technology to
be employed in web development. At this time, we use things such as PHP, JavaScript, HTML5,
CSS, and even ASP.NET. But definitely, PHP is the first option we take into account when we
start a new project.

 11

Who Is This Book For?

This book is written for computer programmers who want to get into PHP web development,
which requires a basic understanding of databases (particularly MySQL), client/server
applications, HTML, and how the Internet works.

The book is structured in chapters and sections, starting with an introduction. The second
chapter explains how PHP should be deployed in a Windows environment, and how the
deployment can be tested to make us sure the process has been performed correctly.

The third chapter covers some PHP basics, and each one of the subsequent chapters, up to
fifth, cover key PHP programming themes such as variables, decision making, arrays, functions,
and databases, in order to give the reader all necessary elements to build a simple, PHP-
functional webpage. The sixth chapter is dedicated to creating this functional webpage, in the
form of a contacts information website, which connects to a database to store information.

Every chapter ends with a summary, which emphasizes the knowledge acquired within it, and
the book is summarized entirely in the seventh chapter.

PHP version 7.0.13 will be used for the exercises explained in this book. Also, IIS (Internet
Information Services) version 10.0 running on a Windows 10 computer will be employed as a
web server. The Microsoft Edge web browser will be used to run code samples.

All code examples discussed in this book can be downloaded here.

https://bitbucket.org/syncfusiontech/php-succinctly

 12

Chapter 1 An Introduction to PHP

What is PHP?

PHP is an open source, general-purpose scripting language oriented for web development. This
language was originally created by Ramsus Lerdorf in 1994, and it was known as Personal
Home Page / Forms Interpreter. The first version of PHP/FI was released in 1995. PHP/FI 2.0
appeared later, in 1997. PHP is now supported by The PHP Group, and the PHP acronym
stands for PHP: Hypertext Preprocessor. The current stable release of PHP at the time of
writing is 7.0.13.

PHP is normally processed by an interpreter, which is implemented as a web server module, so
the web server combines the results of the PHP code and returns a webpage to the client
(usually a web browser). The standard PHP interpreter is powered by the Zend Engine, a free
software released under the GNU/GPL license that allows the use of the software for any
purpose, including commercial projects. The interpreter can be obtained from the PHP Group
website under the same license terms.

One of the best features of PHP is its simplicity for newcomers, which allows you to write simple
scripts in a matter of hours. The language also offers a series of advanced features for
professional programmers. The following table summarizes PHP’s main features.

Table 1: PHP Main Features Summary

Feature Description

Open source and
free to use

Perhaps the most important feature for many developers. This
feature has made the PHP developers community grow increasingly
because there’s no need to acquire any license to start with any kind
of project.

Multi-platform PHP can be used in many operating systems, such as Windows,
Mac OS X, or Linux. PHP is supported by the most of the web
servers today, including Apache and IIS.

Interpreted
language

Unlike the C or C++ languages, in which code needs to be compiled
to run on computers, PHP code is interpreted at the time it is used.
This task is performed by the PHP interpreter implemented in the
web server.

Procedural
programming
support

PHP allows to you employ procedure and function call programming
paradigms.

Object-oriented
programming
support

PHP allows the use of object-oriented programming concepts like
inheritance, polymorphism, and abstraction.

http://php.net/
http://php.net/

 13

Feature Description

C-like syntax PHP programming syntax is C language-oriented.

Non-strongly typed There’s no need to specify the data type for variable declaration.
The type is determined at run time.

Predefined super-
global variables

A set of variables whose names start with a _ that can be accessed
along the entire script execution, no matter where they are invoked.
Some examples are $_GET, $_SESSION, and $_SERVER.

Database support
extensions

PHP supports a wide range of databases, such as MySQL and
PostgreSQL. ODBC databases are also supported.

Text processing PHP has a set of useful text-processing features such as regular
expressions, or XML documents accessing and parsing.

Non-HTML output
capabilities

PHP can generate images, PDF files, or XHTML text on the fly, and
save them in the file system. This can be useful to form a server-
side cache in order to manage dynamic content.

Error Handling
(PHP 7)

PHP 7 throws an exception when an error occurs during script
execution. This exception can be caught to avoid script-crashing.

Besides the features detailed in the previous table, we can also say that PHP can be embedded
into HTML, or HTML can be called from PHP. In this way, all HTML code for an entire website
can be processed by PHP, so the webpages for this site can be created dynamically.

PHP also allows you to create variables dynamically. This is accomplished by using the value of
a declared variable as the name for another variable (which will be explained in Chapter 3).

Chapter summary

This chapter gave a brief introduction to the PHP programming language. The most important
aspects of PHP are summarized in the following list.

• PHP is an acronym for PHP: Hypertext Preprocessor
• PHP is an open source language, free to download and use
• PHP is executed on the server
• PHP can generate dynamic page content
• PHP can connect to a wide range of databases
• PHP can run on various platforms (Windows, Linux, UNIX, Mac OS X, etc.)
• PHP is compatible with almost all web servers used today (IIS, Apache, etc.)
• PHP is easy to learn for newcomers

 14

Chapter 2 Deploying PHP

Installing PHP in a Windows environment

Prerequisites

In order to install PHP on Windows, the following requirements must be fulfilled:

• The computer should have a Windows operating system installed and running
• IIS (Internet Information Services) should be installed and configured.

Installation process

Setting up IIS

To install IIS on Windows 10, we will open the Control Panel and click on the Programs
category link.

Figure 1: Programs Section in the Control Panel

 15

After the Programs dialog is displayed, click Turn Windows features on or off to show the
Windows Features dialog box.

Figure 2: Turning Windows Features On or Off in the Programs Section

In the Windows Features dialog box, click on the Internet Information Services checkbox to
choose all the features needed to host a website in the computer. You must also select the CGI
entry under World Wide Web Services | Application Development Features, because PHP
uses CGI, as you’ll see shortly.

 16

Figure 3: Internet Information Services Feature Selected

After that, click OK to begin the installation process.

 17

Figure 4: Features Installation Progress

When the process finishes, run your web browser and navigate to http://127.0.0.1 in order to
test the installation.

The browser should display the page shown in the following figure.

 18

Figure 5: Internet Information Services Home Page

If the page shown in Figure 5 appears in the browser, IIS was installed successfully.

Installing PHP

The fastest and easiest way to install PHP on Windows is by using the Microsoft Web Platform
Installer, which automates the process of installing and configuring PHP in the target system. A
second way to install PHP is by using a compressed zip file installation. In this case, installing
and configuring PHP should be done manually.

For the purposes of this book, we will explain the zip file installation process and manual PHP
configuration.

 19

Downloading PHP

Every PHP version has two builds available: a thread-safe version and a non-thread-safe
version (NTS). The thread-safe version is intended for environments where a web server can
keep the PHP engine in memory, being able to run multiple threads of execution for different
web requests simultaneously. Since the architecture of IIS and its FastCGI extension provide an
isolation model that keeps requests separate, there is no need for a PHP thread-safe version.
The result is an important performance improvement on IIS, because the NTS version of PHP
avoids unnecessary thread-safety checks.

According to the previous explanation, we will download the NTS version of PHP and install it in
our computer. For a 32-bit system, the PHP NTS version can be obtained from this location. For
a 64-bit system, the download URL is here.

Deploying PHP

Once the PHP package is downloaded, we should unpack the files from the zip PHP package
into a directory of our discretion in the computer system where IIS is installed (C:\PHP is
recommended).

Figure 6: The C:\PHP folder with PHP Files Unpacked

http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x86.zip
http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x64.zip

 20

Figure 6 shows the PHP files in the C:\PHP directory. We can see that the php.ini-
development and php.ini-production files are highlighted. Those files contain the
configuration settings that make PHP work. As suggested by their names, one version of the file
is for development purposes, and the other is for deploying in a production environment. For the
purposes of this book, we’re going to make a copy of the php.ini-development file and save it
as php.ini (so we have the original file as a backup).

Configuring PHP

We’re going to open the php.ini file using a text editor (commonly Notepad.exe), and then we
will uncomment and modify the following settings.

1. Uncomment and set fastcgi.impersonate = 1. The FasctCGI IIS extension supports
the ability to impersonate security tokens coming from the calling client, allowing IIS to
define the security context under which the request will run.

2. Uncomment and set cgi.fix_pathinfo = 0. This setting indicates to PHP that
PATH_TRANSLATED will be set to SCRIPT_FILENAME).

3. Set cgi.force_redirect = 0.
4. Set open_basedir to point to the directory where the content of the website is located

(typically C:\inetpub\wwwroot).
5. Uncomment and set extension_dir to point to the directory where PHP extensions

reside (typically extension_dir = "./ext").
6. Uncomment and set error_log="php_errors.log". This is useful to deal with

troubleshooting.
7. Uncomment every line that corresponds to a Windows extension DLL needed by PHP,

as shown in Figure 7.

 21

Figure 7: php.ini with Needed Extensions Uncommented

Now, we are going to save and close the php.ini file.

Adding PHP location to system path

We need to add the PHP location (commonly C:\PHP) to the system path variable in order to
make the PHP engine available for execution. We should perform the following steps to
accomplish this task.

First, right-click on the This PC icon located in the desktop. Then, click on the Properties option
from the context menu displayed. The following dialog box will appear.

 22

Figure 8: Advanced System Settings Link

Now, click on the Advanced system settings link, located in the left panel of the dialog box,
and the System Properties dialog box will appear. Next, click the Environment Variables
button.

 23

Figure 9: The Environment Variables Button

The Environment Variables dialog box will appear. Now, we need to select the Path variable
within the System Variables section.

 24

Figure 10: The Path System Variable in the Environment Variables Dialog Box

Next, click Edit to display the Edit Environment Variable dialog box.

 25

Figure 11: The Values of the Path System Variable in a List

As shown in Figure 11, all values for the Path system variable are displayed in a list that can be
edited to add new variables or remove some of the values displayed. Click the Edit text button,
which is available for modifying the values using a single line of text. Add the C:\PHP path
leading with a semicolon at the end of the text line, as shown in the following figure.

Figure 12: Adding C:\PHP Path to the Path System Variable

Now, we’re going to click OK until we have exited the System Properties window.

 26

Configuring PHP on IIS

Launch the IIS Manager from the Windows Administrative Tools section located in the Start
menu.

Figure 13: Windows Administrative Tools in the Start Menu

Now, when the IIS Manager window is displayed, click on the hostname that identifies the
computer used as a server. This hostname is placed in the panel located at the left side of the
window.

When the hostname is highlighted, double-click on the Handler Mappings icon, placed in the
IIS section within the panel situated at the middle of the window, as shown in the following
figure.

 27

Figure 14: The Hostname and the Handler Mappings Button

The Handler Mappings action panel is displayed. Now, we should tell IIS which module is in
charge of handling all PHP requests from the clients. In other words, we’re going to establish
which program or library will process all PHP code located in the server. To accomplish this
task, click the Add Module Mapping link situated in the Actions panel, placed at the right of
the window, as displayed in the following figure.

 28

Figure 15: Handler Mappings Action Panel

Now, we’re going to provide the following data:

• Request path: *.php
• Module: FastCGImodule
• Executable: C:\PHP\php-cgi.exe
• Name: FastCGI

With this data, we are telling to IIS that all requests ending with a php file extension will be
handled by the FastCGImodule extension, using the php-cgi.exe program located in the PHP
installation folder (C:\PHP in this case). The name FastCGI is used to identify the module
mapping in the system. The following figure shows this data in the Add Module Mapping dialog
box.

 Note: If the FastCGIModule entry is not in the Module dropdown control, that
means you did not enable CGI in IIS Manager.

 29

Figure 16: Adding PHP Module Mapping

Once the PHP module mapping is added to the system, we need to tell IIS which files will be
treated as the default documents to process every time a web request is received. In other
words, we’re going to indicate which php files will be executed every time a user types
http://127.0.0.1 in the address bar of a web browser.

In order to do this, click on the computer’s hostname located at the left side of the IIS Manager
window. Then, double-click the Default Document icon, as displayed in the following figure.

 30

Figure 17: The Default Document Icon in the IIS Section

Now the Default Document actions panel will be displayed and all default document definitions
will appear on the screen. To add a new default document, click on the Add link placed at the
right of the window, as displayed in the following figure.

 31

Figure 18: Default Document Actions Panel

Now, we’re going to add index.php as a default document by entering the name in the Add
Default Document dialog box, then clicking OK. The following figure shows this task.

Figure 19: Adding a Default Document

We’re going to repeat the process if we want to add default.php as a default document, too.

To apply all these changes, we need to restart IIS. To do this, click on the computer hostname
located at the left of IIS Manager window. Then, click Restart on the right-hand side of the
window.

 32

Figure 20: The Restart Link in the IIS Manager Window

 Note: IIS searches default documents from top to bottom according to the list
displayed in the Default Document actions panel. When one of these documents is
found, this is executed and the search stops.

Testing the installation process

Now we should test the installation process. To accomplish this task, create a text file named
phpinfo.php and save it into the website root folder (commonly C:\inetpub\wwwroot). The file
should contain the following code.

Code Listing 1: PHP Test Program

<?php phpinfo(); ?>

 33

Testing in the local computer

Launch an instance of Microsoft Edge, type http://127.0.0.1/phpinfp.php in the address bar,
and press Enter. The result should be like the one displayed in the following figure.

Figure 21: Testing PHP Installation from the Local Computer

Testing from a remote computer

Launch an instance of a web browser in a computer connected to the same network where the
IIS computer is plugged in. Then, assuming that the IIS computer IP address is 192.168.0.67,
type http://192.168.0.67/phpinfo.php in the address bar and press Enter. In my case, I used a
computer with Ubuntu Desktop as an operating system, and Mozilla Firefox as a web browser.
The result looked like the one displayed in the following figure.

 34

Figure 22: Testing PHP from a Remote Computer Running Ubuntu

Chapter summary

This chapter explained how to deploy PHP in a Windows environment using IIS (Internet
Information Services) as a web server. To perform this deployment, the following requirements
should be fulfilled:

• The computer should have a Windows operating system installed and running.
• IIS installed and configured.

To install IIS in a Windows 10 computer, you should go to the Programs section in the Control
Panel and click Turn Windows features on or off. After that, you should click on the Internet
Information Services checkbox in the Windows Features dialog box, in order to install IIS with
the default features for a web server. The IIS installation process could be started by clicking the
OK button.

Now, to install PHP on the computer, you should download a zip installation package from this
location for a 32-bit system, or from this location for a 64-bit system. After the download is
complete, you should unpack the zip file in a folder named C:\PHP.

To configure PHP, the file php.ini-development should be renamed to php.ini. Then, it should
be edited in order to adjust some PHP working parameters to comply with IIS requirements.

As a final step, you should add C:\PHP to the Path system variable, and open the IIS Manager
to set up PHP as the program that will handle all .php web requests coming from any client
within the network.

http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x86.zip
http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x86.zip
http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x64.zip

 35

Now, you should test the installation process by creating a text file named phpinfo.php in the
website root folder (commonly C:\inetpub\wwwroot). The file should contain the following
programming code: <?php phpinfo(); ?>. Then, you should type

http://127.0.0.1/phpinfo.php from a web browser, and the PHP installation info should be
displayed as a result.

 36

Chapter 3 PHP Basics

Script: The basic concept of PHP

What is a script?

A script in PHP is a text file saved with the .php extension that contains pure PHP programming
code, or PHP programming code embedded into HTML. The .php extension is necessary in the
filename so that the file can be recognized by the PHP engine as a functional script.

Every PHP script has the following syntax.

Code Listing 2: PHP Scripts Syntax

<?php
 /* PHP code goes here */
?>

We can embed PHP code into HTML. In this case, the syntax for the script is the same as the
code displayed in the previous code listing, but it is inside HTML statements. The following code
shows an example of PHP embedded into HTML.

Code Listing 3: PHP Embedded into HTML

<html>
<head></head>
<body>
Hello, today is <?php echo date("l F jS \of Y"); ?>
</body>
</html>

Script samples

The ever-present Hello World

To say “Hello World” using PHP, we’re going to create a file named helloworld.php and save it
into our website root folder. The code for this file is displayed in the following sample.

Code Listing 4: Hello World Sample

<?php
 echo 'Hello World from PHP';
?>

 37

Now, if we enter http://127.0.0.1/helloworld.php in the address bar of our web browser, we
should see something like the following figure.

Figure 23: Hello World Sample Output

Displaying current date

The following sample displays the current date using pure PHP code. You should save the file
as currentdate.php.

Code Listing 5: Displaying Current Date

<?php
 echo 'Hello, today is ';
 echo date("l F jS \of Y");
?>

Again, typing http://127.0.0.1/currentdate.php in the address bar of the web browser, you
should see something like the following figure.

 38

Figure 24: Output for Displaying Current Date Sample

Calling HTML from PHP sample

As explained in Chapter 1, PHP is able to call HTML code. The following code sample
demonstrates this feature.

Code Listing 6: HTML Called from PHP

<?php
 echo "<html>\n<head>\n<title>Calling HTML from
PHP</title>\n</head>\n<body>\n<h1>Hello, calling HTML from
PHP!</h1>\n</body>\n</html>";
?>

At this point, the echo statement has appeared in all the samples. This statement sends the

content of the string placed beside it to the standard output device. For a web server, the
standard output device sends the response for a request to the calling client (usually a web
browser).

In the previous sample, the echo statement sends to the calling client the HTML code

necessary to display “Hello, calling HTML from PHP!” in a web browser. To test this sample,
we should save the code in a file named callinghtml.php. Then, from the address bar of the
web browser, we will type http://127.0.0.1/callinghtml.php, and the output displayed will look
like the following figure.

 39

Figure 25: Calling HTML from a PHP Script

If we want to know which response was sent to the browser, we should press the F12 key to get
the following code in the DOM Explorer.

Code Listing 7: PHP Response Sent to the Browser

<html>
<head>
<title>Calling HTML from PHP</title>
</head>
<body>
<h1>Hello, calling HTML from PHP!</h1>
</body>
</html>

The DOM Explorer is displayed in the following figure.

 40

Figure 26: The DOM Explorer Displaying the PHP Response

As shown in Figure 26, the sample PHP script sent pure HTML code as a response for the
request made by the web browser.

Variables

As in most programming languages, the main way to store data in a PHP program is by using
variables. A variable is an identifier that can hold data dynamically, meaning that data stored in
variables can change according to the program needs during the execution flow.

Declaring and using variables in PHP

Variable declaration, and the use of these variables in PHP, should comply with the following
requisites.

• All variable names are denoted with a leading dollar sign ($).
• Variable names must begin with a letter or underscore character.
• Characters like +, -, %, (,), ., and & cannot be employed.

 41

• Variables can be declared before assignment, but this is not absolutely necessary.
• Variables do not have intrinsic types; a variable cannot know in advance whether it will

be used to store a number or a string.
• Converting variables from one type to another is performed automatically.
• Variable assignment is performed with the = operator, placing the variable on the left

side and the expression to be evaluated on the right.
• The value of a variable is the value of its most recent assignment.

Variable types

The following table summarizes the data types available in PHP.

Table 2: PHP Data Types

Data Type Description

Integer Whole numbers with no decimal point

Double Floating point numbers such as 1.31313 or 34.5

Boolean A type with two possible values, either true or false

NULL The NULL value

String Sequences of characters like ‘Hello World’ or ‘Last Name’

Array A named and indexed collection of values

Object Instances of programmer-defined classes that package both attributes
(values) and methods (functions), specific to the class

Resource Special data types that hold references to resources external to PHP, such
as database connections

The following code sample shows a series of declared variables, each storing a value that
corresponds to one the data types described in the previous table.

Code Listing 8: Declaring Variables in PHP

$var_double = 3 + 0.14159;
$var_integer = 4;
$var_string = "This is a PHP variable";
$var_array = array("An array element","Other element");
$var_boolean = TRUE;
$var_null = NULL;

 42

Variable scopes

The scope of a variable can be defined as the range of availability that variable has, starting
from the program in which the variable is declared. So, in this context, we can have the
following kind of scopes.

• Local variable – A variable that can be referenced in the declaring program only. Once
this program finishes its execution, all local variables are destroyed.

• Global variable – A variable that can be accessed in any part of the executed thread,
starting at the program in which the variable is declared. In order for PHP to recognize a
variable as global, the prefix GLOBAL must be declared before the name of the variable.
All global variables are destroyed when the executed thread finishes.

• Function parameter – A variable declared after a function name and inside parentheses.
The scope of function parameters is the function itself.

• Static variable – A variable declared inside a function, with the word STATIC before its
name. Unlike function parameters, a static variable keeps its value when the function
exits, and that value will be held when the function is called again.

The following sample code shows how the different scopes work.

Code Listing 9: Variable Scopes

<?php
//Local variables
$samplevar = 10;
function sumvars() {
 $a = 5;
 $b = 3;
 $samplevar = $a + $b; //$samplevar is local variable inside this
function
 echo "\$samplevar inside this function is $samplevar.
";
}
sumvars();
echo "\$samplevar outside the previous function is $samplevar.
";
//Function parameters
function phpfunction($parameter1,$parameter2)
{
 return ($parameter1 * $parameter2);
}
$funcval = phpfunction(6,3);
echo "Return value from phpfunction() is $funcval
";

//Global variables
$globalvar = 55;

function dividevalue() {
 GLOBAL $globalvar;
 $globalvar/= 11;
 echo "Division result $globalvar
";
}

 43

dividevalue();

//Static variables
function countingsheeps()
{
 STATIC $sheepnumber = 0;
 $sheepnumber++;
 echo "Sheep number $sheepnumber
";
}

countingsheeps();
countingsheeps();
countingsheeps();
countingsheeps();
countingsheeps();

?>

If we copy the previous code in a file named varscopesample.php in the website root folder
(C:\Inetpub\wwwroot), and type http://127.0.0.1/varscopesamle.php in the address bar of the
web browser, the following output should be displayed.

Figure 27: Variables Scope Sample Results

 44

Predefined variables

There is a series of variables that are available to any script running. Also, PHP provides a set
of predefined arrays containing variables from the environment, the web server, and user input.
These arrays are called superglobals. The following table summarizes the superglobals.

Table 3: PHP Superglobals Summary

PHP Superglobals

$GLOBALS This array contains a reference to every global variable in the script.
The name of every global variable is a key of this array.

$_SERVER This array contains information about the web server environment,
such as headers, paths, and script locations. Since these values are
created by the web server being used, some of them could not exist
in some environments.

$_GET This array contains associations to all variables passed to the script
via the HTTP GET method.

$_POST This array contains associations to all variables passed to the script
via the HTTP POST method.

$_FILES This array contains associations to all items uploaded to the script
via the HTTP POST method.

$_COOKIE This array contains associations to all variables passed to the script
via HTTP cookies.

$_REQUEST This array contains associations to the contents of $_GET, $_POST,

and $_COOKIE.

$_SESSION This array contains associations to all session variables available to
the script.

$_PHP_SELF A string containing the script file name in which this variable is used.

$php_errormsg A string variable containing the last error message generated by
PHP. The $php_errormsg variable is not a true superglobal object,

but it's closely related.

The following code shows some examples of predefined variables.

Code Listing 10: Predefined Variables Sample

<?php
 /* $GLOBALS example*/
 $apptitle = "Application title"; //This is a global variable
 function locals()

 45

 {
 $apptitle = "Local application title";
 echo "\$apptitle value at global scope: " . $GLOBALS["apptitle"]
. "
";
 echo "\$apptitle value at local scope: " . $apptitle . "
";
 }

 locals();

 /* $_SERVER example */
 echo $_SERVER['PHP_SELF'] . "
"; //Script filename relative to the
website root
 echo $_SERVER['SERVER_NAME'] . "
"; //Server name or Server IP
Address
 echo $_SERVER['REMOTE_ADDR'] . "
"; //The IP address of the client
computer
 echo $_SERVER['REMOTE_HOST'] . "
"; //The host name or IP address
of the client computer

?>

 Note: A detailed sample for all superglobals is beyond the scope of this book.

Assuming the previous sample is saved in a file named predefinedvariables.php, if we type
http://127.0.0.1/predefinedvariables.php into the address bar of the web browser, we should
get the following output.

 46

Figure 28: Superglobals Sample Output

Constants

A constant is an identifier that holds a simple value. This value cannot change during the
execution of the script.

Naming constants

Constants are case-sensitive by default. A good practice in PHP dictates that constant names
should always be uppercase. Constant names can start with a letter or underscores.

Defining constants

In PHP, all constants are defined by the define() function. To retrieve the value of a constant,

we have to specify its name. We can also use the constant() function to read a constant

value. Unlike with variables, we don’t need to use the dollar ($) sign at the beginning of the

constant name.

The following code sample shows how to define and read constant values.

Code Listing 11: Constants Sample

<?php

 47

 define("WEBPAGEWIDTH", 100);

 echo WEBPAGEWIDTH; //Retrieving constant value using its name directly
 echo constant("WEBPAGEWIDTH"); //Retrieving constant value with
constant() function
?>

Operators

An operator is a symbol that is used to perform a process into an expression. This process is
also known as an operation.

Code Listing 12: Operators Sample

$total = $subtotal + $tax;

In this code sample, $subtotal + $tax is an expression. The process to be performed in this

expression is to add the value of the $subtotal variable to the value of the $tax variable. This

process is represented by the plus (+) sign, and this sign is called an operator. The $subtotal

and $tax variables are called operands.

PHP supports some types of operators, which are explained in the following sections.

Arithmetic operators

The following table summarizes the use of arithmetic operators, which are used to perform
arithmetic operations.

Table 4: PHP Arithmetic Operators Summary

Operator Description

+ Adds the values of two operands

- Subtracts the value of the second operant from the first one

* Multiplies two operands

/ Divides a numerator operand (placed at the left) by a de-numerator
operand (placed at the right)

% Gets the remainder of an integer division between two operands

++ Increases the value of an integer operator by 1

-- Decreases the value of an integer operator by 1

 48

 Note: Technically, ++ and -- can also be considered assignment operators.

Comparison operators

As suggested by their type name, comparison operators are used to check whether or not a
criteria between two operands is met. If the operands adhere to the checked criteria, the result
returned by the comparison operation will be the true Boolean value. Otherwise, a false

Boolean value will be returned. These operators are summarized in the following table.

Table 5: PHP Comparison Operators Summary

Operator Description

== Checks if the value of two operands are equal

!= Checks if the value of the operand placed at the left is not equal to
the value of the operand placed at the right

> Checks if the value of the operand placed at the left is greater than
the value of the operand placed at the right

< Checks if the value of the operand placed at the left is less than the
value of the operand placed at the right

>= Checks if the value of the operand placed at the left is greater than
or equal to the value of the operand placed at the right

<= Checks if the value of the operand placed at the left is less than or
equal to the value of the operand placed at the right

Logical operators

These operators are used to perform logical operations between two operands. A logical
operation is a process that returns either true or false, depending on the logical state (true or

false) of two operands. These operators are summarized in the following table.

Table 6: Logical Operators Summary

Operator Description

and Logical AND. Returns true if both operands are true.

or Logical OR. Returns true if any of the two operands is true.

xor Returns true if any of the two operands are true, but not both.

 49

Operator Description

&& Logical AND. Returns true if both operands are true.

|| Logical OR. Returns true if any of the two operands is true.

! Logical NOT. Reverses the logical state of its operand; if the operand

is true, it becomes false, and vice versa.

Assignment operators

These operators are used to store a value into an operand. In this case, the value to store is
placed at the right side, and the operand that will receive the value is placed at the left. The
following table summarizes these operators.

Table 7: Assignment Operators Summary

Operator Description

= The simple assignment operator. Stores values from the right side
to the left-side operand.

+= Add and assign operator. Adds the value of the operand placed at
the right side to the value of the operand placed at the left, then
assigns the result to the left operand.

-= Subtract and assign operator. Subtracts the value of the operand
placed at the right side from the value of the operand placed at the
left, then assigns the result to the left operand.

*= Multiply and assign operator. Multiplies the value of the operand
placed at the right side by the value of the operand placed at the
left, then assigns the result to the left operand.

/= Divide and assign operator. Divides the value of the operand placed
at the left side by the value of the operand placed at the right, then
assigns the result to the left operand.

%/ Modulus and assign operator. Divides the value of the operand
placed at the left side by the value of the operand placed at the
right, then assigns the remainder to the left operand.

 50

Conditional operator

The conditional operator (expressed as ? :) performs an inline decision-making process. It

evaluates the logical state of an expression placed at the left side of the ? sign, and then

executes one of two given expressions, both separated by the : sign. If the logical state of the

expression is true, the expression placed at the left side of the : sign is executed; otherwise, the

right-side expression is performed. The following code sample illustrates this.

Code Listing 13: Conditional Operator Code Sample

$total = $subtotal + $tax;
$discount = $total < 150 ? $total*0.15 : $total*0.20;
/*
$discount receives a value depending of $total value. If $total is less
than 150, then $discount receives the result of multiplying $total by
0.15. Otherwise, the result of multiplying $total by 0.20 is assigned to
$discount
*/

Precedence of operators in PHP

Operator precedence is the order in which a certain kind of operation (defined by the operator
itself) is performed within an expression. Let’s consider the following code sample.

Code Listing 14: An Expression Sample to Explain Operator Precedence

$tax = $subtotal - $discount * $taxrate;

This expression will perform three kind of operations: subtraction, multiplication, and
assignment. The important thing to find out here is the order in which the computer will execute
the operations. This depends on the operators’ precedence.

To get a better understanding of operator precedence, we should classify the operators into the
following categories.

• Unary operators: Operators that precede a single operand
• Binary operators: Operators that take two operands
• Ternary operators: Operators that take three operands and evaluate either the second or

the third operand, depending on the value of the first one
• Assignment operators: Operators that assign a value to an operand

Taking these categories into account, the following table dictates the order in which operators
are executed within an expression, from top to bottom.

Table 8: Operator Precedence Table

Associativity Operator Additional Information

non-associative clone new clone and new

 51

Associativity Operator Additional Information

left [array()

right ** arithmetic

right
++ -- ~ (int) (float) (string)
(array) (object) (bool) @

types and increment/decrement

non-associative instanceof types

right ! logical

left * / % arithmetic

left + - . arithmetic and string

left << >> bitwise

non-associative < <= > >= comparison

non-associative == != === !== <> <=> comparison

left & bitwise and references

left ^ bitwise

left | bitwise

left && logical

left || logical

right ?? comparison

left ? : ternary

right
= += -= *= **= /= .= %= &=
|= ^= <<= >>=

assignment

left and logical

left xor logical

left or logical

Now, if we review Code Listing 14, the computer will first multiply $discount by $taxrate

(multiplicative operators are placed first in precedence), and then will subtract the result of the
operation from $subtotal.

http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.references.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
http://php.net/manual/en/language.operators.assignment.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php

 52

Strings

A string is a sequence of characters, like “Welcome to PHP Succinctly e-book samples”, that
can be assigned to a variable or processed directly by a PHP statement.

The following code sample illustrates the use of strings.

Code Listing 15: Using Strings

<?php

 $salutation = "Good morning";
 echo $salutation . ", today is " . date("l F jS \of Y") . "
";

?>

Note that there are two different uses of strings: a string assigned to a variable, and a string
processed directly by a PHP statement (echo in this case). The dot employed in the expression

that follows the echo statement is known as a concatenate operator, and is used to join the

contents of two strings, evaluating them from left to right.

A string may be delimited either by single (‘) or double (“) quotes, but there’s a big difference in
how the strings are treated, depending on the delimiter employed. Strings delimited with single
quotes are treated literally, while double-quoted strings re"place variables with their values in
case a string contains variable names within it. Also, double-quoted strings interpret certain
character sequences that begin with the backslash (\), also known as escape-sequence

replacements. These sequences are summarized in the following table.

Table 9: Escape Sequence Replacements Summary

Escape Sequence Replacement

\n Replaced with the newline character

\r Replaced with the carriage-return character

\t Replaced with the tab character

\$ Replaced with the dollar sign itself. This avoids the interpretation
of the dollar sign as the variable name starting character.

\" Replaced by a single double-quote

\' Replaced by a single quote

\\ Replaced by a backslash

The following code shows a bit about string treatment.

 53

Code Listing 16: String Treatment According to Its Delimiters

<?php
 $somevariable = "Hello";
 $literalstring = 'The $somevariable will not print its contents';

 print($literalstring);
 print("
");

 $literalstring = "$somevariable will print its contents";
 echo $literalstring;
?>

As shown in the previous sample, when the variable name appears in the single-quoted string, it
is treated literally as a part of the string itself. But, when the same variable name is placed into
the double-quoted string, it is replaced with its own contents when the string is printed.

Arrays

We can define an array as a data structure intended to hold one or more values of similar type.
That is, if we need to store 50 different strings, we can use one array to place them instead of
declaring 50 string variables. We can create the following kinds of arrays in PHP:

• Numeric arrays – Arrays with a numeric index, the values of which are accessed and
stored in linear order

• Associative arrays – Arrays with strings as indexes. The values stored in them are
associated with key values instead of linear index order

• Multidimensional arrays – Arrays that contain one or more arrays and their values are
accessed using multiple indices

Arrays can be created using the array() function, or by declaring the name of the variable that

will store the array, followed by its index enclosed in brackets. The following code sample shows
how to create an array.

Code Listing 17: Arrays in PHP

<?php
 /* First method to create array. */
 $intnumbers = array(1, 2, 3, 4, 5);

 /* We iterate the array */
 foreach($intnumbers as $value) {
 echo "Array member value is $value
";
 }

 /* Second method to create array. */
 $letternumbers[0] = "one";
 $letternumbers[1] = "two";

 54

 $letternumbers[2] = "three";
 $letternumbers[3] = "four";
 $letternumbers[4] = "five";

 foreach($letternumbers as $value) {
 echo "Array member value is $value
";
 }
?>

We just saw how to create a numeric array. Now, let’s see how to create an associative array.

Code Listing 18: Associative Arrays

<?php
 $intnumbers = array("one" => 1,"two" => 2,"three" => 3,"four" =>
4,"five" => 5);

 /* We iterate the array */
 foreach($intnumbers as $k => $value) {
 echo "$k => $value
";
 }
?>

Decision making

PHP provides a set of keywords to take a course of action based on a condition. If the condition
is met, some statements are executed; otherwise, the script could do nothing or execute
another group of different statements.

If elseif … else

The if statement executes some code if a certain condition is met. If it doesn’t, execution jumps

to the elseif clause and evaluates the expression placed after it. When the expression after

the elseif clause evaluates to true, the code placed within that clause is executed. If the

expression evaluates to false, the code within the else clause is performed.

Let’s take a look at the following code sample.

Code Listing 19: Use of if elseif ... else Statement

<?php
 date_default_timezone_set("Etc/GMT+7");
 $hour = date('H');
 if ($hour >=0 && $hour < 12)
 echo "Good Morning!";

 55

 elseif ($hour >= 12 and $hour < 19)
 echo "Good afternoon!";
 else
 echo "Good Evening!";
?>

The previous code displays a greeting message depending on the hour of the day, which is
stored in the $hour variable. The if elseif … else statement evaluates the $hour variable

starting with the condition placed after the if statement. If the condition is met, the greeting

message within the statement is printed. Otherwise, the condition after the elseif statement is

now evaluated. Again, if this condition is fulfilled, the greeting message within elseif is printed.

If not, the greeting message within the else statement is printed. Then, the execution ends.

 Note: We can omit the elseif statement in order to get two-way decision-making.

Switch statement

The switch statement allows us to execute a block of code depending on a comparison of an

expression, which is placed within parentheses after the statement declaration, and a series of
values placed in each one of them in a separate case clause. Every case clause has an

associated a block of code. This code will be executed when the expression linked to the
switch statement equals to the value placed in that case clause. The following sample

illustrates the use of this statement.

Code Listing 20: Using Switch Statement

<?php
 date_default_timezone_set("Etc/GMT+7");
 $hour = date('H');
 $dow = date("D");

 if ($hour >=0 && $hour < 12)
 $greeting = "Good Morning!";
 elseif ($hour >= 12 and $hour < 19)
 $greeting = "Good afternoon!";
 else
 $greeting = "Good Evening!";

 switch ($dow){
 case "Mon":
 echo $greeting . ", today is Monday";
 break;
 case "Tue":
 echo $greeting . ", today is Tuesday";
 break;
 case "Wed":

 56

 echo $greeting . ", today is Wednesday";
 break;
 case "Thu":
 echo $greeting . ", today is Thursday";
 break;
 case "Fri":
 echo $greeting . ", today is Friday";
 break;
 case "Sat":
 echo $greeting . ", today is Saturday";
 break;
 case "Sun":
 echo $greeting . ", today is Sunday";
 break;
 default:
 echo $greeting . "What day is this?";
 }
 ?>

In this code sample, the switch statement is employed to display the name of the day-of-week

along with the greeting message. First, we call the date(‘D’) function, which stores an

abbreviated version of day-of-week name in the $dow variable. Then, we use switch to execute

the echo statement with the corresponding full day-of-week name, depending on the value

stored in the $dow variable.

Loops

A loop statement allows you to execute the same code block repeatedly, either while a certain
condition is met, a specific number of times, or until a series of elements from a data structure
have been all iterated. PHP supports the following loop statements:

• for – Loops through a code block a specified number of times
• while – Loops through a code block while a certain condition is met
• do … while – Loops through a code block once, and repeats the execution as long as

the condition stablished is true
• foreach – Loops through a code block as many times as elements exist in an array

The following code snippets explain the syntax for each of the previous loop statements.

Code Listing 21: for Statement Syntax

for(initializer=initial value; condition; increment)
{
 //code to be executed
}
/*

 57

The initializer is used as a counter of the number of times the code
block will be executed.

The condition is an expression which can be evaluated either true or
false, and in this case this condition establishes the final value the
initializer can take, before the loop ends.

The increment is a value which will be added to or subtracted from the
initializer, in order to keep the initializer from going beyond the final
value established in the condition, making the loop end.
*/

//Example.
for($iteration = 0;$iteration <= 10;$iteration++)
{
 echo "$iteration";
}

Code Listing 22: while Statement Syntax

while(condition)
{
 //code to be executed
}
/*
Condition is an expression which evaluates either true or false. When it
evaluates to false, the loop ends.
*/

//Example.
$sheepnumber = 0;
while ($sheepnumber < 11)
{
 echo "Sheep number $sheepnumber";
 $sheepnumber++;
}

Code Listing 23: do ... while Statement Syntax

do
{
 //code to be executed
}
while(condition)
/*

 58

The code block within curly brackets is executed once. After that,
condition is evaluated.
Condition is an expression which evaluates either true or false. When it
evaluates to false, the loop ends.
*/

//Example.
$sheepnumber = 1;
do
{
 echo "Sheep number $sheepnumber";
 $sheepnumber++;
}
while ($sheepnumber < 11);
$totalsheeps = $sheepnumber – 1;
echo "We count only $sheepnumber sheeps";

Code Listing 24: foreach Statement Syntax

foreach (arrayname as value)
{
 //Code to be executed
}
/*
The code block within curly brackets is executed as many times as there
are elements in the array that is evaluated.
*/

//Example.
$sheepsarray = array(1,2,3,4,5,6,7,8);
foreach($sheepsarray as $value)
{
 echo "Sheep number $value
";
}

Continue and break special keywords

There are two special keywords that can be used within a loop: break and continue.

• The break keyword terminates the execution of a loop prematurely.
• The continue keyword halts the execution of a loop and starts a new iteration.

Let’s look at the following code sample.

 59

Code Listing 25: Break and Continue Sample

<?php
 $subtotal = 3.5;
 while (true)
 {
 $taxrate = rand(0,10);
 if ($taxrate == 10) break;

 if ($taxrate == 0) continue;
 $taxvalue = $subtotal*($taxrate/100);
 echo "Tax to be payed $taxvalue
";
 }
?>

This code shows the execution of a while loop indefinitely (the condition established is always

true). The mechanism used to end this loop is the break keyword. This keyword is executed

only if the variable $taxrate takes a value of 10. If not, the execution of code continues, and if

the $taxrate variable evaluates to 0, and the loop halts and starts a new iteration, so the echo

statement is not executed.

Chapter summary

This chapter covered the basics of PHP, starting with the concept of a script. A script in PHP is
a text file that contains pure PHP programming code, or PHP programming code embedded into
HTML, and is executed in the web server.

As in most programming languages, the main way to store data in a PHP program is by using
variables, which are identifiers intended to hold data dynamically, meaning the data stored in
variables can change during the execution flow.

Variables in PHP are declared by denoting their names with a leading dollar sign ($), and then

starting with a letter or underscore. Variables can be converted from one data type to another
automatically.

A variable can be known only in certain regions of a PHP script. This is known as variable
scope. PHP has the following variable scopes: local, for variables that are available only in the
program where they are declared; global, for variables that can be accessed in any part of the
executed program; function parameters, which are variables available within the function where
they’re employed; and static, which are variables declared inside functions that keep its values
between every function call.

PHP also allows you to use constants. A constant is an identifier which holds a simple value and
cannot be changed during the execution of the script. Constant identifier names are case-
sensitive. The best practices in PHP dictate that constant names should be uppercase.
Constants are defined by using the define() function.

 60

PHP uses expressions to perform calculations. A set of symbols are used in order to perform
these calculations. These symbols are called operators, and the identifiers declared between
the operators are called operands. PHP has the following types of operators: arithmetic
operators, which are used to perform operations with numbers; comparison operators, which
are used to check if certain criteria between two operands are met; logical operators, which are
employed to get a true or a false value depending on the logical state of two operands;
assignment operators, which are employed to store the value of an expression into an operand;
and conditional operators, which are employed to perform inline decision-making.

When an expression contains several operators, calculations are performed following a strict
order, known as operator precedence. To explain this precedence, we can classify operators in
the following categories: unary operators, which are operators preceding a single operand;
binary operators, which take two operands; ternary operators, which take three operands,
evaluating either the second or the third depending on the value of the first one; and assignment
operators, which store a value into an operand.

Operator precedence is rather complicated. Common operators in an expression are executed
in the following order: increment and decrement, unary, multiplicative and division, addition and
subtraction, relational, equality, bitwise, ternary, assignment, logical AND, logical XOR, logical OR.

In PHP, we can use sequences of characters stored in variables or directly placed at the right of
a statement. These sequences are called strings. Strings can be delimited either by single or
double quotes. PHP treats strings in a different way depending on how they’re delimited. Every
PHP statement is considered a single-quoted string literal. When variable names are present in
a double-quoted string, PHP replaces the name of the variable with its contents.

When we need to store several values of a similar type, PHP provides us with a data structure
known as an array. We can use this structure instead of declaring many variables. In PHP we
have the following kind of arrays: numeric, which store values that can be accessed using a
numeric index; associative, which use strings as indexes and associate them to the values
stored; and multidimensional, which contain one or more arrays accessing its values using
multiple indexes. An array can be created using the array() function, or by declaring a variable

followed by an index enclosed in brackets.

PHP provides a set of statements to take a course of action based on a condition. These
statements are known as decision-making statements, and they are: if … elseif … else,

which executes a code block when the condition after the if statement is true, or the code

block within the elseif statement if the condition of the if statement is false and the

condition of the elseif statement is true, or it executes the code within the else statement if

both conditions are false; and the switch statement, which executes a block of code

depending on a comparison of equality for an expression with a series of values, each one
placed after a case clause, which also contains the code to be executed if the expression value

is equal to the value associated to this particular case clause.

At the end, we learned about loop statements, which allow you to execute a particular code
block repeatedly, either while a certain condition is met, a specific number of times, or until a
series of elements from a data structure have been all iterated. These statements are: for,

which loops through a code block a specified number of times; while, which loops through a

code block while a certain condition is met; do … while, which loops through a code block

once, and repeats the execution as long as the condition is true; and foreach, which loops

through a code block many times as elements exist in an array.

 61

PHP provides two special keywords to be used within a loop: break, which terminates the

execution of a loop prematurely; and continue, which halts the execution of statements within a

loop and starts a new iteration.

 62

Chapter 4 Functions and File Inclusion

User-defined functions

Function definition

A function is a piece of code that receives data by using a set of variables named parameters,
and then processes this data and returns a value. Sometimes functions don’t receive any data
at all, and only return a value, or just perform an action and don’t return a value.

Creating functions

To create a function in PHP, we should use the reserved keyword function, followed by the

name we want to give to that function. Then, we need to write the code the function will execute
within curly braces. The following code shows an example of a function.

Code Listing 26: A Simple PHP User-Defined Function

<?php

 function showmessage()
 {
 echo "This message was displayed from within a function
";
 }

 showmessage();
?>

This function code prints a message and returns no value; a return value is not strictly
necessary when defining functions. There’s another issue regarding this code: every time we
call the function, the same message is printed. This is not practical, because if we want to print
a different message, another function should be created. To deal with cases like this, we need
to provide data to the function by using a series of identifiers called parameters.

Employing parameters

Parameters in functions are a series of identifiers declared after the function name, enclosed in
parentheses. We can declare as many parameters as we need. These parameters are
considered variables within the function.

Now, let’s make a better version of the showmessage() function displayed in Code Listing 26.

 63

Code Listing 27: A User-Defined Function with Parameters

<?php

 function showmessage($message)
 {
 echo "$message
";
 }

 showmessage('This message is displayed by using parameters');
?>

Returning values from a function

A function can return a value to the calling program by employing the return statement. When

the return statement is issued, the function execution stops. The following code returns a

greeting message from a function.

Code Listing 28: A Function That Returns a Value

<?php

 function greetingmessage()
 {
 date_default_timezone_set("Etc/GMT+7");
 $hour = date('H');
 $dow = date('N')-1;
 $namesofdays =
array("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday
");

 if ($hour >=0 && $hour < 12)
 $result = "Good Morning!";
 elseif ($hour >= 12 and $hour < 19)
 $result = "Good afternoon!";
 else
 $result = "Good Evening!";

 $result = $result . ", today is $namesofdays[$dow]";
 return $result;
 }

 echo greetingmessage();

 ?>

 64

Defining default values for parameters in a function

We can set function parameters to have a default value, in case the calling program doesn’t
pass any value to them. To define default values for parameters, we just place the desired value
beside the parameter name, leading by an equal assignment operator (=).

Now, we’re going to modify the greetingmessage() function of the previous sample, in order to

display or omit the day-of-week name. By default, if a value is not passed to the corresponding
parameter, the day-of-week name will be omitted.

Code Listing 29: Setting Up Default Values for Parameters

<?php

 function greetingmessage($showdayofweek = false)
 {
 date_default_timezone_set("Etc/GMT+7");
 $hour = date('H');
 $dow = date('N')-1;
 $namesofdays =
array("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday
");

 if ($hour >=0 && $hour < 12)
 $result = "Good Morning!";
 elseif ($hour >= 12 and $hour < 19)
 $result = "Good afternoon!";
 else
 $result = "Good Evening!";

 if ($showdayofweek) $result = $result . ", today is
$namesofdays[$dow]
";
 return $result;
 }

 echo greetingmessage(true); //Shows day-of-week name
 echo greetingmessage(); //Shows greeting message only

 ?>

Calling functions dynamically

A function can be called dynamically by storing its name into a string variable. Then, we can use
this variable as we would the function name itself. The following sample uses the
greetingmessage() function discussed in previous code examples and modifies it to be called

dynamically, depending on the current hour.

 65

Code Listing 30: Calling Functions Dynamically

<?php

 function getgreetingfunction()
 {
 date_default_timezone_set("Etc/GMT+7");
 $funcnames =
array('goodmorning','goodmorning','goodafternoon','goodevening');
 $hour = date('H');
 return $funcnames[(int)$hour/6];
 }

 function dayofweekname($daynumber)
 {
 $namesofdays =
array("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday
");
 return $namesofdays[$daynumber - 1];
 }

 function goodmorning($showdayofweek = false)
 {
 $result = "Good Morning!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }

 function goodafternoon($showdayofweek = false)
 {
 $result = "Good Afternoon!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }

 function goodevening($showdayofweek = false)
 {
 $result = "Good Evening!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }

 $functionname = getgreetingfunction();

 66

 echo $functionname();
 echo $functionname(true);

 ?>

As noted in the previous code, we broke down the original function into five smaller ones. The
first (greeetingfunction) will return the name of one of the program functions that will submit

the greeting message. For doing this, we split the hours of a day into four pieces of six hours
each (4 x 6 = 24). Each one of these pieces has a matching item into the $funcnames array.

This array stores the names of the functions that should be executed according to the hour of
the day. We assume that the first twelve hours are considered part of the morning, which is from
0 to 11 hours. So, the first two items in the array store the same name. The third and the fourth
items store the name for the afternoon and the evening greeting messages, in that order.

To get the proper array index, we divide the current hour returned by the date(‘H’) function by

6. The dayofweekname function returns the day-of-week name, according to the current date.

Finally, we store the corresponding greeting message function name into the $functioname

variable, and then we execute it by placing the variable name after the echo statement.

Built-in functions

PHP has a large set of built-in functions. We can classify these functions into several
categories. The most important of them, according to the scope of this book, are displayed in
the following list.

• Array functions – Allow us to interact with and manipulate arrays
• Date & Time functions – Help us to get the date and time from the server in which scripts

are running
• String functions – Allow us to manipulate strings
• Character functions – Help us to check whether a string or character falls into a certain

class
• File system functions – Used to access and manipulate the file system of the server in

which scripts are running
• Directory functions – Used to manipulate directories located at the server in which

scripts are running

The following sections summarize each category of functions in a series of tables, where each
table contains the most relevant functions (according to the scope of this book) within that
category.

 67

Array functions

Table 10: Array Functions Listing

Function Description

array() Creates an array

array_change_key_case() Returns an array with all keys either in lowercase or
uppercase

array_chunk() Splits an array into chunks of arrays

array_combine() Creates an array by using one array for keys and another
array for its values

array_count_values() Returns an array with the number of occurrences for each
value

array_diff() Compares array values and returns the differences

array_fill() Fills an array with values

array_keys() Returns all keys of any array

asort() Sorts an array and maintains index association

arsort() Sorts an array in reverse order and maintains index
association

Date and time functions

Table 11: Date and Time Functions Listing

Function Description

date_date_set() Sets the date to a given date-time value

date_format() Returns a formatted date according to a given
format

 date_parse() Returns an associative array with detailed info about
a given date

date_time_set() Sets the time to a given value

time_zone_indentifiers_list() Returns a numeric index array with all time zones
identifiers

date() Formats the local time/date

 68

String functions

Table 12: String Functions Listing

Function Description

strlen() Returns the length of a string

strpos() Finds and returns the position of the first occurrence of a
string within another string

substr() Returns a part of a string

ltrim() Removes white spaces or other characters from the
beginning of a string

rtrim() Removes white spaces or other characters from the end of
a string

str_repeat() Returns a repeated string

Character functions

Table 13: Character Functions Listing

Function Description

ctype_alnum() Checks for alphanumeric characters in a string

ctype_alpha() Checks for alphabetic characters in a string

 ctype_digit() Checks for numeric characters in a string

ctype_lower() Checks for lowercase characters in a string

crtype_upper() Checks for uppercase characters in a string

ctype_cntrl() Check for control characters (such as Tab) in a string

File system functions

Table 14: File System Functions Listing

Function Description

copy() Creates a copy of a file

delete() Deletes a file

 69

Function Description

 dirname() Returns the directory portion for a given path

file() Reads an entire file into an array

file_exists() Checks whether a file or directory exists

basename() Returns the filename portion of a given path

Directory functions

Table 15: Directory Functions Listing

Function Description

chdir() Changes the current directory

dir() Opens a directory handle and returns an object

 closedir() Closes a directory previously opened with dir()

getcwd() Returns the current working directory

readdir() Reads an entry from a directory handle

scandir() Returns a list of all files and directories inside a specified path

File inclusion

Being able to reuse code is an important aspect of application development. Reusing code
gives the developer an easy mechanism to maintain complex applications with reduced effort. In
PHP, we can reuse code by using file inclusion.

File inclusion allows us to include the content of a PHP file into another file, before the server
executes it. There are two functions that help us to perform file inclusion:

• include() – Copies all the text in the specified file into the file where the function is
used. In case of any problem when loading the file, the function generates a warning
message and the script continues its execution.

• require() – Similar to include(), except that if there is any problem when loading
the file, the function generates a fatal error and the script execution is halted.

 70

 Tip: Use the require() function instead of include() to prevent the script’s
execution when there is a problem with file inclusion.

To illustrate file inclusion, we’re going to split the code sample detailed in the “Calling functions
dynamically section” into two files. The first one will contain all function declarations, and it will
be named commonfunctions.php.

Code Listing 31: commonfunctions.php

<?php
 function getgreetingfunction()
 {
 date_default_timezone_set("Etc/GMT+7");
 $funcnames =
array('goodmorning','goodmorning','goodafternoon','goodevening');
 $hour = date('H');
 return $funcnames[(int)$hour/6];
 }

 function dayofweekname($daynumber)
 {
 $namesofdays =
array("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday
");
 return $namesofdays[$daynumber - 1];
 }

 function goodmorning($showdayofweek = false)
 {
 $result = "Good Morning!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }

 function goodafternoon($showdayofweek = false)
 {
 $result = "Good Afternoon!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }

 function goodevening($showdayofweek = false)
 {

 71

 $result = "Good Evening!";
 if ($showdayofweek) $result = $result . ", today is " .
dayofweekname(date('N'));
 $result = $result . "
";
 return $result;
 }
?>

The second file will contain the script to be executed. It will be named usingfileinclusion.php.

Code Listing 32: usingfileinclusion.php

<?php

 require("commonfunctions.php");
 $functionname = getgreetingfunction();

 echo $functionname();
 echo $functionname(true);

?>

This code sample shows the use of the require() function. This function takes the content of

commonfunctions.php and inserts it into the script. Now when we call
getgreetingfunction(), it is available to the script even when it is not explicitly defined in

usingfileinclusion.php.

Chapter summary

This chapter explored topics related to functions. A function is a piece of code that receives data
by using a set of variables named parameters, and then processes this data and returns a
value. In PHP, we have user-defined and built-in functions. A user-defined function is created by
the developer by using the reserved keyword function, followed by the name of the function.

When you need to pass data to a function, you should use a series of identifiers called
parameters. Parameters are declared after the function name and enclosed in parentheses. You
can declare as many parameters as you need. All these parameters will be considered variables
within the function. A function can return a value to the calling program employing the return

statement.

We can set functions’ parameters to have a default value, in case the calling program doesn’t
pass any value to any of them. Default values are defined by placing the desired value at the
right side of the parameter name, leading with an equal assignment operator (=).

A function can be called dynamically by storing its name into a string variable. We can use this
variable as we would the function name itself.

 72

PHP has a large set of built-in functions that can be classified in categories. The categories
discussed in this chapter are: array functions, which allow the developer to interact with and
manipulate arrays; date and time functions, which get the date and time from the server in which
scripts are running; string functions, which allow the developer to manipulate strings; character
functions, which check whether a string or character falls into certain class; file system
functions, which access and manipulate the file system; and directory functions, which are used
to manipulate directories.

Reusing code is important for maintaining complex applications with minimal effort. PHP allows
the reuse of code by means of file inclusion. File inclusion is the mechanism used to insert the
content of a PHP file into another one, and it is performed by two functions: include(), which

copies all the text in the specified file into the script, generating a warning message when a
problem occurs; and require(), which is similar to include(), except that it halts script

execution when a problem occurs.

 73

Chapter 5 Files and Databases

Managing Files with PHP

PHP provides a series of functions that help us manipulate files, performing operations such as
opening, reading, writing, and closing a file.

Reading a file

If we want to read the contents of a file, the functions fopen(), filesize(), fread(), and

fclose() should be used together. The following code sample demonstrates how to read a file

and display its contents using a webpage.

Code Listing 33: Reading a File

<?php
 $filename = "license.txt";
 $file = fopen($filename, "r");

 if($file == false)
 {
 echo ("Error when opening file");
 exit();
 }

 $filesize = filesize($filename);
 $filecontents = fread($file, $filesize);
 fclose($file);

 echo "<html>\n";
 echo "<head>\n<title>Reading a file using PHP</title>\n</head>\n";
 echo "<body>\n<pre>$filecontents</pre></body>\n";
 echo "</html>\n";

?>

This code attempts to open the file named license.txt, by using the fopen() function. The "r"

parameter value passed to the function indicates that the file should be opened as read-only. If
the operation fails, an error message is displayed, and the script execution is halted with the
exit() function.

A file pointer is saved into the $file variable. This pointer is going to be used to perform the

rest of file operations in the script.

 74

After the file is opened, we need to calculate the size of it in order to tell PHP how many bytes
we need to read. This task is executed using the filesize() function, and the actual size is

stored in the $filesize variable.

Now, we store the contents of the license.txt file, which is assumed to be in the same directory
as the PHP script, using the fread() function. To perform this operation, fread() needs to

receive the file pointer stored previously in the $file variable, and the file size stored in the

$filesize variable. The file contents are placed into the $filecontents variable. After that,

we close the file using the fclose() function and the file pointer is saved in the $file variable.

The last statements send the HTML code needed to create the webpage, including the contents
of the text file that were read previously, enclosed in a HTML <pre> tag.

Writing text to a file

We can also write text to a file using PHP. This is similar to reading a file, but we need to use
the fwrite() function instead. The following code writes a webpage into a text file, and then

uses the file contents to display the page in the web browser.

Code Listing 34: Writing Text to a File

<?php
 require("commonfunctions.php");

 function createwebpage()
 {
 $greetingfunction = getgreetingfunction();
 $greeting = $greetingfunction(true);

 $webpagecontent = "<html>\n<head>\n<title>Writing a file using
PHP</title>\n</head>\n";
 $webpagecontent = $webpagecontent .
"<body>\n<pre>$greeting</pre>\n<pre>This web page was created writing a
file with PHP</pre>\n</body>\n</html>\n";
 $filename = "webpage.txt";
 $file = fopen($filename,"w");
 fwrite($file,$webpagecontent);
 fclose($file);
 }

 createwebpage();

 $filename = "webpage.txt";
 $file = fopen($filename, "r");

 if($file == false)
 {
 echo ("Error when opening file");

 75

 exit();
 }

 $filesize = filesize($filename);
 $filecontents = fread($file, $filesize);
 fclose($file);

 echo "$filecontents";

?>

In this sample, we’re employing file inclusion in order to use the set of functions defined in the
commonfunctions.php file. The createwebpage() function stores the webpage’s HTML code

in a variable named $webpagecontent, and then writes this content in the webpage.txt file,

assuming the PHP script has permissions that allow writing to the current directory. Now, to
display the webpage, we call createwebpage() first, and then we read the webpage.txt file

into the $filecontents variable. At the end, we display the $filecontents variable, which is

the webpage itself.

Connecting to MySQL databases

As explained in Chapter 1, PHP supports a wide range of Database Management Systems
(RDBMS), with MySQL being the most-used database system. PHP 7 includes an extension
named mysqli (MySQL improved), which allows us to access MySQL 4.1 and above. This
extension is implemented through a class named mysqli. For the purposes of this book, we’re

going to use this class for making connections to MySQL databases.

Prerequisites

In order to work with the exercises explained in this section, your computer should have the
latest version of MySQL and the MySQL Workbench utility installed.

Installing MySQL in the local computer

MySQL provides an installation program for the Windows environment. This program can be
downloaded here.

Once the program is downloaded, we just need to double-click the filename, and the installation
process will display the following dialog box.

http://cdn.mysql.com/Downloads/MySQLInstaller/mysql-installer-community-5.7.16.0.msi

 76

Figure 29: MySQL Installer License Agreement

To continue the process, we should check the I accept the license terms checkbox, and then
click Next.

Now, the installer asks for a setup type that suits our installation case. Since we’re practicing
connecting MySQL using PHP, a Developer Default type would be okay for us. This is the
default setup type for the installation process, so we only need to click Next, and the process
will continue.

 77

Figure 30: Choosing Setup Type

The MySQL Installer now checks the computer system for all external requirements needed to
install the products selected in the previous dialog. The installer can download and install some
prerequisites, but in some cases a manual intervention is required. In these cases, we should
click over those requirements tagged with a Manual legend in order to download the files
needed. Once we finish installing manual prerequisites, we can use the Check button to review
if those requirements are now met. Then, we need to click on the Execute button to perform an
automatic installation of those requirements still missing. At the end, when all requirements are
installed, we should click Next to continue with the process.

 78

Figure 31: Checking Installation Requirements

The next dialog box displayed by the MySQL installer lists all products scheduled for installation.
Click the Execute button, and the installation program will begin to deploy the products. A
progress bar will be displayed below the Status column of the list. When a product deployment
is finished, a status of “Complete” will be shown.

 79

Figure 32: Ready to Install Dialog Box

After all products are installed, the installation program displays the Configuration dialog box,
listing all the products that need to be configured. Usually, MySQL Server, Samples, and
Examples products are configurable, so they appear listed in the dialog box with a “Ready to
Configure” status. We should click Next to begin product configuration.

 80

Figure 33: Product Configuration Dialog Box

At this point, a dialog box will appear showing the installation type we chose at the beginning of
the installation process, and asking for changes to the default connectivity values. This dialog
box allows us to display or hide the advanced configuration options. Even though the next figure
shows the Advanced Options checked, hiding this dialog and letting MySQL installer set the
default advanced values is recommended. It is also recommended that you leave the default
connectivity values, since they ensure proper database functionality.

To continue the configuration process, click Next.

 81

Figure 34: MySQL Server Configuration

The next dialog box displayed is Accounts and Roles. This is where we’re going to establish
the password for the root user. I recommend entering a password that the configuration
program considers strong. After doing this, click Next to continue.

 82

Figure 35: Setting the Root Account Password

The next step is to configure the Windows Service details, such as service name, how MySQL
Server Windows service is executed, and whether or not MySQL server should be loaded at
startup. The configuration program displays a series of default values. If you have no particular
needs related to this specific configuration, I recommend using the default values.

 83

Figure 36: Setting up Windows Service

Plug-ins and extensions are beyond the scope of this book, and since the Advanced Options
checkbox was disabled, the Apply Server Configuration dialog box will appear next. Click the
Execute button to begin the configuration process. When this process is finished, the opening
dialog box is reloaded and we can perform another installation and configuration.

 84

Figure 37: Applying Configuration Values to the Server

Using MySQL Workbench to create a database

A utility program called MySQL Workbench is installed along with the MySQL Server
Development installation type. This program will help us to manage our server, including the
ability to create databases. I recommend making a desktop shortcut for this program so you can
quickly access it anytime you need it.

After you create the shortcut, double-click it to launch the MySQL Workbench utility. Once the
program is launched, the following dialog box will appear.

 85

Figure 38: MySQL Workbench Utility Main Screen

Figure 38 shows the MySQL Workbench main screen. This main screen is divided in three
areas: MySQL connections, which holds one or more shortcuts pointing to a particular MySQL
server; Models, which holds shortcuts that point to a database model file (discussion of these
files are beyond the scope of this book); and Shortcuts, which holds shortcuts to other MySQL
utilities or forums.

By default, a shortcut to our local MySQL server instance appears in the main screen. So, to
connect to this instance, we should click the shortcut. Then, main screen will look like the
following figure.

 86

Figure 39: MySQL Local Instance Main Window

Figure 39 shows the MySQL Local Instance Manager. This is the place where we are going
work with the database server. The area indicated by the red arrow is called the Query Tab,
which is used to enter all SQL statements needed to manage the server. These statements
include database and table creation. The area surrounded by the red square is where all
available schemas in the server are displayed. For practical purposes, a database is the same
as a schema.

Now, we’re going to create our database.

The contactinfo database

The exercises discussed in the following sections will rely on a database named contactinfo,
which will contain a single table to save our contacts’ information. The following code snippet
will create this database using MySQL Workbench utility.

Code Listing 35: Creating the contactinfo Database

CREATE SCHEMA contactinfo;

USE contactinfo;

CREATE TABLE contacts (ID INT AUTO_INCREMENT PRIMARY KEY,
NAME VARCHAR(200) DEFAULT '' NOT NULL,
EMAIL VARCHAR(300) DEFAULT '' NOT NULL,

 87

PHONENUMBER VARCHAR(50) DEFAULT '' NOT NULL,
SUBJECT VARCHAR(200) DEFAULT '' NOT NULL,
MESSAGE TEXT);

Now, the query tab of MySQL Workbench will look like the following figure.

Figure 40: Creating the Database from a Query Tab

As shown in Figure 40, we need to click the lightning icon to execute the code and create the
database. After code execution, the contactinfo database will be displayed in the schemas list.
(You may have to click on the Refresh icon to see it.)

 88

Figure 41: contactinfo Database in the Schemas List

Now, we are ready to use PHP to access our database.

Our first database connection

The first thing we’re going to do is test a MySQL connection to the contactinfo database. This
can be done by executing the following code.

Code Listing 36: Testing a Connection to the contactinfo Database

<?php

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'your password';
 $database = 'contactinfo';
$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database";
 echo "Error: MySQL connection failed: \n";
 echo "Errno: " . $mysqli->connect_errno . "\n";
 echo "Error: " . $mysqli->connect_error . "\n";

 exit;
}
echo "MySql connection succeeded";
$mysqli->close();

?>

 89

This code attempts to connect to the contactinfo database. The connection credentials are
supplied in the $dbhost, $dbuser, and $dbpass variables, and the database name is stored in

a variable named $database. We use the mysqli class in order to create the connection. The

credentials for establishing the connection are passed when we attempt to create an instance of
the class and save it into the $mysqli variable. If the property connect_errno of the class

evaluates to true, a series of error messages are displayed, indicating that it was not possible

to make a connection. Then, the exit statement ends the script.

Assuming everything is executed successfully, the output displayed by the web browser should
look like the following figure.

Figure 42: A Successful Connection to MySQL

Inserting a row in the contacts table

Since our database is recently created, it is empty. So, we are not able to perform any kind of
query because there’s no data to view. Therefore, the first thing we will do is insert a couple of
rows into the contacts table.

 90

Code Listing 37: Inserting Rows in Contacts Table

<?php

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'mypassword';
 $database = 'contactinfo';
$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database
";
 echo "Error: MySQL connection failed:
";
 echo "Errno: " . $mysqli->connect_errno . "
";
 echo "Error: " . $mysqli->connect_error . "
";

 exit;
}

$sql = "INSERT INTO contacts (name,email,phonenumber,subject,message)
VALUES ('John Doe', 'johndoe@myemaildomain.com', '(253)001-2345','Test data
row','Testing data insertion')";

if ($mysqli->query($sql) === TRUE) {
 echo "New record created successfully";
} else {
 echo "Error: " . $sql . "
" . $mysqli->error;
}

$mysqli->close();

?>

The previous code uses a SQL INSERT statement assigned to the variable $sql to add a new

row in the contacts table. The first thing the code does is try to connect to the database. If
connection succeeds, the SQL INSERT statement is executed by the query() method of the

$mysqli class instance. If the value returned by the method evaluates to true, a message

indicating a successful operation is displayed. Otherwise, an error message is shown. In both
cases, the connection is closed at the end using the close() method of mysqli class.

Inserting data using parameters

SQL statements allow the use of parameters so that a query can receive data to be processed
as a function does. The following code shows a parameterized SQL statement.

 91

Code Listing 38: A Parameterized SQL Statement

INSERT INTO contacts (name, email, phonenumber, subject, message) VALUES
(?,?,?,?,?);

The question marks (?) in this code sample correspond to the parameters’ declaration. In this

case, the statement has five parameters to receive the data that will be inserted in the table. In
order to execute the statement successfully, the SQL statement must receive the corresponding
data before its execution. To perform this action, we need to bind the parameters with the
variables that hold the data. This can be done by using the bind_param method of the mysqli

class statement property. But, unlike the insertion code sample discussed in the previous

section, statement demands the SQL statement to be compiled before binding data. Compiling

the statement does not mean executing it, but reviewing it to check if it is okay. To perform this
operation, we should use the prepare method of the statement property. Now, let’s take a look

at the following code.

Code Listing 39: Inserting Rows Using Parameters

<?php

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'mypassword';
 $database = 'contactinfo';
$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database
";
 echo "Error: MySQL connection failed:
";
 echo "Errno: " . $mysqli->connect_errno . "
";
 echo "Error: " . $mysqli->connect_error . "
";

 exit;
}
$contact_name = "Another John Doe";
$email_addr = "anotherjohndoe@myemaildomain.com";
$phonenumber = "(654)290-4567";
$subject = "Adding rows with parameters";
$message = "This row was added using parameters";

$sql = "INSERT INTO contacts (name,email,phonenumber,subject,message)
VALUES (?,?,?,?,?)";

$statement = $mysqli->stmt_init();

if ($statement->prepare($sql))
{

 92

 $statement-
>bind_param("sssss",$contact_name,$email_addr,$phonenumber,$subject,$messag
e);
 $statement->execute();
 $statement->close();
}

$mysqli->close();
?>

The first thing to note in this code is the parameterized SQL statement that is assigned to the
$sql variable. Before the statement is assigned, a set of five variables are declared, and the

data that will be inserted in the new row are assigned to each one of them. The $statement

variable receives a statement object by means of the stmt_init() method. Now, the SQL

sentence is compiled by using the prepare() method, and if it is alright, the program binds the

parameters declared in the SQL sentence with the variables that hold the data.

To perform data binding, the method bind_param() is employed. The first parameter of this

method is a string formed by a sequence of characters, as long as the number of parameters to
be bound. In this case, there are five parameters that appear in the SQL statement, so the string
is five characters long. The s in the first position of the string stands for the string data type of

the first parameter appearing in the SQL sentence. Because all parameters for the sentence are
string data typed, the sequence of characters is formed by s only.

Now, to do the insert operation, the execute() method of the statement object is performed.

After that, the close() method of the statement object is executed to free all resources

employed. At the end, the connection is closed using the close() method of mysqli class.

Querying the contacts table

Now that the contacts table has data that can be queried, we’re going to create a PHP script
that displays the contents of the first three columns from all rows in the contacts table.

Code Listing 40: A Script Which Queries the Contacts Table

<?php

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'mypassword';
 $database = 'contactinfo';
$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database
";
 echo "Error: MySQL connection failed:
";
 echo "Errno: " . $mysqli->connect_errno . "
";

 93

 echo "Error: " . $mysqli->connect_error . "
";

 exit;
}

$sql = "SELECT contacts.* FROM contacts ORDER BY contacts.name";
$resultset = $mysqli->query($sql);

if ($resultset->num_rows > 0)
{
 while ($datarow = $resultset->fetch_assoc())
 {
 echo "Contact Id: " . $datarow["ID"] . " - Contact Name: " .
$datarow["NAME"] . " - Contact Email: " . $datarow["EMAIL"] . "
";
 }
}
else
{
 echo "No contacts available";
}
$mysqli->close();
?>

As we can see in Code Listing 40, the contents of the $sql variable have changed to a SQL

SELECT statement. Although the query method of mysqli class is used, the approach in this

sample is a little different. The result returned from the method is stored in a variable named
$resultset, and it should be a dataset containing all rows from the contacts table. The

conditional if statement inquires about the number of rows returned. If this number is greater

than zero, a while loop iterates through all the dataset and displays the contents of the ID,

NAME, and EMAIL columns for each row. Now, assuming that the previous sample was saved in

a file named queryingcontacts.php, if we type http://127.0.0.1/queryingcontacts.php into the
address bar of the web browser, the output displayed should look like the following figure.

 94

Figure 43: Displaying Contacts in the Web Browser

Displaying contacts in a webpage

In this section we’re going to use data from the contacts table to display an HTML table in the
web browser. The following code should be saved in a file named contactswebpage.php.

Code Listing 41: Displaying Contacts in an HTML Table

<?php

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'mypassword';
 $database = 'contactinfo';
$mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database
";
 echo "Error: MySQL connection failed:
";
 echo "Errno: " . $mysqli->connect_errno . "
";
 echo "Error: " . $mysqli->connect_error . "
";

 exit;
}

 95

$sql = "SELECT contacts.* FROM contacts ORDER BY contacts.name";
$resultset = $mysqli->query($sql);

echo "<!DOCTYPE html>\n<html>\n";
echo "<title>Displaying Contacts List</title>\n";
echo "</head>\n";
echo "<body>\n";

if ($resultset->num_rows > 0)
{
 echo "<section>\n";
 echo "<div style=" . '"color:#FFFFFF; background-color:#5F5F5F; text-
align: center;"' . ">\n";
 echo "<h3>OUR CONTACT LIST</h3>\n";
 echo "</div>\n";
 echo "<div>\n";
 echo "<table width=100%>\n";
 echo "<thead>\n";
 echo "<tr><th style=" . '"color:#FFFFFF; background-color:#5F5F5F; text-
align: center;"' . ">ID</th>\n";
 echo "<th style=" . '"color:#FFFFFF; background-color:#5F5F5F; text-
align: center;"' . ">Contact Name</th>\n";
 echo "<th style=" . '"color:#FFFFFF; background-color:#5F5F5F; text-
align: center;"' . ">Contact Email</th>\n</tr>\n</thead>\n";
 echo "<tbody>\n";
 while ($datarow = $resultset->fetch_assoc())
 {
 echo
"<tr>\n<td>".$datarow["ID"]."</td><td>".$datarow["NAME"]."</td>
<td>".$datarow["EMAIL"]."</td>\n</tr>\n";
 }
 echo "</tbody>\n";
 echo "</table>\n</div>\n";
 echo "</section>\n";
}
else
{
 echo "<section>\n<p>No Contacts available</p>\n</section>";
}

echo "<footer>\n<div style=" . '"color:#FFFFFF; background-color:#5F5F5F;
text-align: center;"' . ">\n<p>Copyright (C)2016 All PHP Web
Developers</p>\n</div>\n</footer>\n";
echo "</body>\n</html>\n";

$mysqli->close();

?>

 96

This code starts making a connection to MySQL in localhost, as the previous data access

code samples did. If the connection fails, the script ends. Otherwise, the script queries the
contacts table using the query method of the mysqli class. Data returned by the query is

stored in the $resultset variable. After that, the script begins to create the HTML document

that will be displayed in the web browser. In this case, the HTML head and the beginning of the

body section are sent as a part of the response from the web server. The next part of the HTML

document depends on the number of rows returned by the query method. If no rows are

returned, a paragraph with the sentence “No Contacts available” is placed in the HTML
document; otherwise, an HTML table is created using the contents of all data rows in the
$resultset variable. Every data row corresponds to an HTML table row. The script ends by

creating the footer section of the webpage and closing the connection to MySQL.

Now, if we type http://127.0.0.1/contactswebpage.php into the address bar of the web
browser, we should get the following output.

Figure 44: Contacts Displayed in an HTML Table

The HTML that is generated by the PHP script is the following:

Code Listing 42: HTML Dynamically Generated Code

<!DOCTYPE html>
<html>
<title>Displaying Contacts List</title>
</head>
<body>

 97

<section>
<div style="color:#FFFFFF; background-color:#5F5F5F; text-align: center;">
<h3>OUR CONTACT LIST</h3>
</div>
<div>
<table width=100%>
<thead>
<tr><th style="color:#FFFFFF; background-color:#5F5F5F; text-align:
center;">ID</th>
<th style="color:#FFFFFF; background-color:#5F5F5F; text-align:
center;">Contact Name</th>
<th style="color:#FFFFFF; background-color:#5F5F5F; text-align:
center;">Contact Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td><td>Another John Doe</td>
<td>anotherjohndoe@myemaildomain.com</td>
</tr>
<tr>
<td>2</td><td>Jane Doe</td> <td>janedoe@myemaildomain.com</td>
</tr>
<tr>
<td>1</td><td>John Doe</td> <td>johndoe@myemaildomain.com</td>
</tr>
</tbody>
</table>
</div>
</section>
<footer>
<div style="color:#FFFFFF; background-color:#5F5F5F; text-align: center;">
<p>Copyright (C)2016 All PHP Web Developers</p>
</div>
</footer>
</body>
</html>

This was created dynamically at the server side. This means that this code will grow larger as
the number of contact data rows increases in the table.

Chapter summary

The purpose of this chapter was to explain how to perform input and output operations with files
using PHP, and how to connect to a MySQL database to insert or retrieve data.

 98

PHP provides a series of functions that help us to manipulate files by doing operations such as
opening, reading, writing, and closing a file. The functions fopen(), filesize(), fread(), and

fclose() should be used together, in order to read the contents of a file. If we want to write text

to a file, we need to use fwrite() function instead of fread().

As explained in Chapter 1, PHP supports a wide range of Database Management Systems
(RDBMS), and MySQL is the database system most-often used in conjunction with PHP. PHP 7
includes an extension named mysqli (MySQL improved), which allows you to access MySQL

4.1 and above. For the purposes of this book, using MySQL with PHP requires that you have an
active instance of MySQL installed in the computer used as a web server and have the MySQL
Workbench utility installed.

The exercises discussed in this chapter relied on a database named contactinfo, which
contains a single table to save our contacts information. We used MySQL Workbench utility to
create this database. After that, a series of exercises to insert data and query the contacts table
were explained. These exercises used the mysqli extension through a class also named

mysqli. This class works in the following way: the constructor mysqli() creates a connection

to a MySQL server and uses the property connect_errno to inform if the connection was

successful. In case of success, we can use the query() method to insert or retrieve data. Also,

we can use parameterized SQL sentences through the statement object, binding parameters

to data variables with the bind_param() method.

Finally, we explained a code sample in order to create an HTML table with the contents of the
contacts table.

 99

Chapter 6 A Contact List Website

The purpose of this chapter is to gather all the themes discussed previously, and turn them into
a simple contact list website using the contacts database. The final result should look like the
following figure.

Figure 45: The Personal Contact List Website

As noticed in the previous design, the website homepage has been divided into four sections: a
header, which shows the name of the website; a toolbar, which holds a button that allows you to
add contacts to the table; a data table, which displays all contacts stored in the database; and a
footer, which displays some copyright information. Also, a Close button should be displayed at
the right side of the header section.

 100

This kind of design suggests a complex programming. Coding this website into a single file
seems very impractical and hard to maintain. So, we’re going to employ the file inclusion
technique discussed in Chapter 4. As a result, we’re going to create a main program file and
one program file for each section described in the design. We’re also going to code database
connections in another separate file.

Website entry point: index.php

During PHP deployment, which was explained in Chapter 2, we defined a default document
named index.php. In other words, we established that document as one of the entry points for
our deployed website, so every time we type http://127.0.0.1 into the address bar of the web
browser, the server executes index.php automatically, if it exists. So, for the purposes of the
exercise detailed in this section, we’re going to save the code for our main file as index.php.

Creating a basic HTML structure

The first thing we’re going to program is a basic HTML document structure. A file named
contactswebsitehtmlsections.php will store a couple of functions to create this structure.

Code Listing 43: contactswebsitehtmlsections.php

<?php

 function GetHtmlHeader()
 {
 $result = "<!DOCTYPE html>\n<html>\n<head>\n<title>Personal Contact
List</title>\n";
 $result .= '<link rel="stylesheet" type="text/css"
href="css/contactform.css">';
 $result .= '<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></sc
ript>';
 $result .= '<script src="js/contactform.js"></script>';
 $result .= "\n</head>\n<body>\n";
 $result .= '<div class="container">' . "\n";

 return $result;
 }

 function GetHtmlFooter()
 {
 $result = "</div>\n</body>\n</html>";
 return $result;
 }

?>

 101

The GetHtmlHeader() and GetHtmlFooter() functions of this code return each one a string,

with the opening and closing tags needed to create an empty HTML document. Now, we’re
going to use this file in index.php, as shown in the following code sample.

Code Listing 44: index.php

<?php

 require("contactswebsitehtmlsections.php");

 echo GetHtmlHeader();
 echo GetHtmlFooter();

?>

Note the use of the require() function. This function includes the contents of the

contactswebsitehtmlsections.php file into index.php. After that, the echo statement calls

each one of the functions coded in the included file. Now, if we type http://127.0.0.1 in the
address bar, the web browser will show a blank page. However, if we ask for the source code of
the webpage, we will look at the following HTML document.

Code Listing 45: Basic HTML Document Structure

<!DOCTYPE html>
<html>
<head>
<title>Personal Contact List</title>
</head>
<body>
<div class="container">
</div>
</body>
</html>

Creating the website header

Now, we’re going to create the website header. This header will display the website’s title and a
button to close the web browser’s window. The code for doing this will be saved in a file named
websiteheader.php.

Code Listing 46: websiteheader.php

<?php

 function GetWebSiteHeader()
 {

 102

 $result = '<header style="width:100%; height:50px; background-color:
#8D8D8D; color: white;">';
 $result .= '<div style="display: inline-block; width:90%; text-
align: center;"><h1 style="margin: 0px 0px 0px 0px;">Personal Contact List
Website</h1></div>';
 $result .= '<div style="display: inline-block; width:10%;"><img
src="images/closebutton.png" alt="Close" height="36" width="36"
/></div></header>';
 return $result;
 }

?>

This code constructs a string with the <header> HTML tag. This tag is used to define a header

section into our webpage. Let’s look at the style attribute defined in the tag. This attribute

controls the way any element is displayed in the web browser by assigning to it a series of
properties enclosed in double quotes. In this case, the width property tells the web browser that

the header will cover the entire width of the browser window (100%). The height property tells

the browser that the header will be 50 pixels in height (50px). The background-color property

sets a gray scale color for the header background, and the color property sets a white color for

all text displayed.

According to the design displayed at the beginning of this chapter, the website’s header will
display a title for the site and a button to close the web browser’s window. In order to do this, the
header section needs to be divided in two subsections. The <div> tag is used to accomplish

this task.

The first <div> tag creates the subsection in which the title will be displayed. The style

attribute for this subsection tells the browser that the title will cover 90% of the web browser’s
window width, the text will be centered within the boundaries of the subsection, and the
subsection belongs to the same row in which the close button will be displayed (display:
inline-block;).

The second <div> tag will show the Close button. For this purpose, an image named

closebutton.png saved in the images folder (located into the website’s root folder) is used as a
hyperlink (<a> tag). Two lines of code are assigned to the onclick hyperlink event’s attribute.

This code will be executed when the user clicks over the Close button’s image. The first line
calls the close() method of the window object (the window object is equal to the web browser’s

window), and the second line of code returns a false value in order to prevent the browser

from jumping to an nonexistent link.

Creating the website toolbar

After the header section, the website should display a toolbar with one command button: Add

Contact. By clicking on this button, the user can display a dialog box in order to insert data for a
new contact in the database.

 103

Code Listing 47: websitetoolbar.php

<?php

 function GetWebSiteToolbar()
 {
 $result = '<section style="margin-top: 5px; height: 60px;"><div
class="container">';
 $result .= '<button type="button" style="height: 56px;"
onclick="div_show(); return false;">Add Contact</button>';
 $result .= '</div></section>';
 return $result;
 }
?>

The code for creating the toolbar begins with a <section> tag. In HTML, this tag is used to

define sections in a document, such as headers, footers, and of course, custom sections such
as a toolbar. The style attribute defined in the <section> tag will use the margin-top

property to apply a five-pixel margin top, starting from the end of the previous section (the
website’s header). The height property assigns a 60-pixel height to the <section>.

Now, to display the command button in the toolbar, we will create a subsection using the <div>

tag. Then, the command button is created by using the <button> tag along with the

type="button" attribute. The button is set with a 56-pixel height using the style attribute

along with the height property, and a function to handle the click event is assigned with the

onclick attribute.

Creating the website footer

Even though the data table section is placed before the website footer, we’re going to review the
code for website footer creation first, since the data table section requires the most of our
attention.

The purpose of the website footer is to display a copyright message. The footer was considered
in the design in order to include all main elements for a webpage. We’re going to save this code
in a file named websitefooter.php.

Code Listing 48: websitefooter.php

<?php

 function GetWebSiteFooter()
 {
 $result = '<footer style="clear: both; position: fixed; left: 0;
bottom: 0; height: 50px; margin-top: -50px; width: 100%; background-color:
#8D8D8D; color: white;">';

 104

 $result .= '<div style="display: inline-block; width:80%; text-align:
left;"><p style="margin: 12px 0px 0px 0px;">Copyright (C)2016 All PHP Web
Developers</p></div>';
 $result .= "</footer>";

 return $result;
 }

?>

Likewise, in the website header’s code, we have a <footer> tag to define the webpage’s footer

section. Looking at the design displayed at the beginning of this chapter, we can see that the
footer for the webpage should be placed at the bottom of the browser’s window. To accomplish
this task, we should assign values to a series of properties and assign them to the style

attribute. These properties are:

• clear – Prevents floating elements beside the declaring element. In this case, the value
avoids floating elements at both the left and right sides of the <footer> section.

• position – Specifies the method used for positioning an element. The fixed value
positions the <footer> section relative to the browser window.

• left – Specifies the left coordinate at which to place the element.
• bottom – Specifies the y coordinate at which to place the element, starting from the

bottom of the browser window. In this case, 0 indicates that the footer will be drawn
starting at the bottom of the window.

• height – Defines a 50-pixel height for the footer section.
• margin-top – The negative value is equal to the footer height, and ensures the footer

section is always pulled up, starting from the bottom of the browser’s window.

To display the copyright message, we use a <div> section that covers the 80 percent of the

<footer> section. A top margin of 12 pixels is assigned to the message’s paragraph.

At this point, the code for index.php should look like the following sample.

Code Listing 49: index.php, So Far

<?php

 require("contactswebsitehtmlsections.php");
 require("websiteheader.php");
 require("websitetoolbar.php");
 require("websitefooter.php");

 echo GetHtmlHeader();
 echo GetWebSiteHeader();
 echo GetWebSiteToolbar();
 echo GetWebSiteFooter();
 echo GetHtmlFooter();

?>

 105

If we type http://127.0.0.1 into the address bar of the web browser, the output should look like
the following figure.

Figure 46: Personal Contact List Website, So Far

 Note: The X icon in the upper-right corner is the image file closebutton.png,
which you must generate yourself or get from the files that accompany this e-book.

Creating the data table section

The data table section displays contacts info using a HTML table. To accomplish this task, the
following requirements should be fulfilled:

• Create a <section> tag to contain the data table section.
• Create a <div> tag to contain the HTML table.
• Create the HTML table using the <table> tag.
• Create the HTML table headers using the <th> tag.
• Connect to the contacts database using the mysqli class.
• Perform a SQL SELECT query using the query() method.
• Iterate through all rows in the returned dataset to create each HTML table row using

<tr> and <td> tags.

We’re going to create a script to perform all these steps. The script will be saved in a file named
datatablesection.php.

 106

Code Listing 50: datatablesection.php

<?php

 require("contactsquery.php");

 function GetDataTableSection()
 {
 $result = "<section>\n";
 $result .= '<div style="width: 100%; height: 90%; overflow: auto;">';
 $result .= "\n";
 $result .= '<table width="100%">';
 $result .= "\n";
 $result .= '<tr style="background-color: #E1E1E1; color: #000000;
text-align: center;">';
 $result .= "\n";
 $result .= '<th width="5%">ID</th>';
 $result .= "\n";
 $result .= '<th width="35%">Name</th>';
 $result .= "\n";
 $result .= '<th width="35%">Email address</th>';
 $result .= "\n";
 $result .= '<th width="25%">Phone number</th>';
 $result .= "\n</tr>\n";

 $resultset = ContactsDataSet();

 if ($resultset != null)
 {
 if ($resultset->num_rows > 0)
 {
 $rownumber = 0;

 while ($datarow = $resultset->fetch_assoc())
 {
 $rownumber++;

 if ($rownumber % 2 == 0)
 {
 $result .= '<tr style="background-color: #E1E1E1;
color: #000000;">';
 }
 else
 {
 $result .= '<tr style="background-color: #FFFFFF;
color: #000000;">';
 }

 107

 $result .= '<td style="text-align: right;">' .
$datarow["ID"] . '</td>';
 $result .= '<td>' . $datarow["NAME"] . '</td>';
 $result .= '<td>' . $datarow["EMAIL"] . '</td>';
 $result .= '<td>' . $datarow["PHONENUMBER"] .
'</td>';
 $result .= '</tr>';
 $result .= "\n";
 }
 }
 }

 $result .= "</table>\n";
 $result .= "</div>\n";
 $result .= "</section>\n";

 return $result;
 }

?>

The first line of Code Listing 50 includes a file named contactsquery.php. This file contains a
script with a function named ContactsDataSet(), which connects to the contacts database and

returns a data set that is used to populate the table. After file inclusion, the script defines a
function called GetDataTableSection(). This function will return the necessary HTML code to

create the table that will display all rows from the contacts database. The table is built within the
<section> and the <div> tags. The <section> tag delimits the DataTable section into the

webpage. The <div> tag is used to contain the table. The overflow property defined in the

style attribute tells the web browser that scroll bars should be displayed if the contents of the

table are larger than the section height (overflow: auto). Then, the table headers are created,

and the script calls the ContactDataSet() function, storing the result in the $resultset

variable. If a null value is returned from the function, or if the $resultset variable contains no

rows, table population does not happen. Otherwise, the script iterates through all rows and fills
the table.

Code Listing 51: contactsquery.php

<?php
 function ContactsDataSet()
 {
 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'userpassword';
 $database = 'contactinfo';
 $mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

 if ($mysqli->connect_errno) {
 return null;

 108

 }

 $sql = "SELECT contacts.* FROM contacts ORDER BY contacts.name";
 $resultset = $mysqli->query($sql);
 $mysqli->close();
 return $resultset;
 }
?>

At this point, index.php should look like the following code sample.

Code Listing 52: index.php, So Far

<?php

 require("contactswebsitehtmlsections.php");
 require("websiteheader.php");
 require("websitetoolbar.php");
 require("datatablesection.php");
 require("websitefooter.php");

 echo GetHtmlHeader();
 echo GetWebSiteHeader();
 echo GetWebSiteToolbar();
 echo GetDataTableSection();
 echo GetWebSiteFooter();
 echo GetHtmlFooter();

?>

Creating the Add New Contact dialog box

Now, we’re going to add the HTML code needed to create a dialog box to add a new contact.
This dialog box should look like the following figure.

 109

Figure 47: Add New Contact Dialog Box

The code for including this dialog box should be saved in a file named getcontactform.php.

Code Listing 53: getcontactform.php

<?php

 function GetContactForm()
 {
 $result = '<div id="newcontact" style="display: none;">';
 $result .= "\n";
 $result .= '<div id="popupContact">';

 110

 $result .= "\n";
 $result .= '<form action="#" id="form" method="post" name="form">';
 $result .= "\n";
 $result .= '<img id="close" src="images/close.png" onclick
="div_hide()">';
 $result .= "\n";
 $result .= '<h2>Add New Contact</h2>';
 $result .= "\n";
 $result .= '<hr>';
 $result .= "\n";
 $result .= '<input id="name" name="name" placeholder="Name"
type="text">';
 $result .= "\n";
 $result .= '<input id="email" name="email" placeholder="Email"
type="text">';
 $result .= "\n";
 $result .= '<input id="phonenumber" name="phonenumber"
placeholder="Phone Number" type="text">';
 $result .= "\n";
 $result .= '<input id="subject" name="subject" placeholder="Subject"
type="text">';
 $result .= "\n";
 $result .= '<textarea id="message" name="message"
placeholder="Message"></textarea>';
 $result .= "\n";
 $result .= '<button type="button" name = "submit" id="submit"
onclick="savecontact()">Save</button>';
 $result .= "\n";
 $result .= '</form>';
 $result .= "\n";
 $result .= '</div>';
 $result .= "\n";
 $result .= '</div>';
 $result .= "\n";

 return $result;
 }

?>

As noticed in the previous code, the dialog box is an HTML form placed into a <div> section.

The way in which the dialog box is displayed is established by using CSS styles properties.
These properties are saved in a file named css/contactform.css. The display: none

property inside the style attribute prevents the dialog box from being displayed when we load

the website for the first time.

At this point, some JavaScript functions were added to the website in order to manage the Add
Contact button’s click event, the Save button’s click event, the Close button, the validation of
data entries, and the process of inserting contact info in the database.

 111

Code Listing 54: js/contactform.js

function savecontact() {
 if (document.getElementById('name').value == ""
 || document.getElementById('email').value == ""
 || document.getElementById('subject').value == ""
 || document.getElementById('message').value == ""
 || document.getElementById('phonenumber').value == "")
 {
 alert("You must fill all entries!");
 return;
 }

 document.getElementById('submit').disabled = true;

 $.post("insertcontact.php",
 {
 name: document.getElementById('name').value,
 email: document.getElementById('email').value,
 phone: document.getElementById('phonenumber').value,
 subject: document.getElementById('subject').value,
 message: document.getElementById('message').value
 },
 function(data, status){
 if (data == "OK")
 {
 window.location.reload();
 }
 else
 {
 alert(data);
 }
 }).fail(function(data,status){alert("Error " + status);});

 document.getElementById('submit').disabled = false;

}

//Function to Display Popup
function div_show() {
document.getElementById('newcontact').style.display = "block";
}
//Function to Hide Popup
function div_hide(){
document.getElementById('newcontact').style.display = "none";
}

There are three functions in the previous code. The last two allow you to display or hide the Add
New Contact dialog box. The trick is simple: to show the dialog box, the display property for

 112

the 'newcontact' div section receives a value of "block" after the div_show() function is

executed. Hiding the dialog box is performed by the div_hide() function, by setting the value

of the display property to "none".

 Note: The div_show() function is executed when the user clicks over the Add
Contact button located at the toolbar, and the div_hide() function is executed when
the user clicks on the Close button located at the top-right corner of the Add New
Contact dialog box.

Now, let’s review the savecontact() function. First, the function checks for values stored in all

entries. If one of these entries has no value, the function fires an alert and finishes the
execution. Otherwise, the function disables the Save button and uses the $.post jQuery

method to execute the insertcontact.php script, passing its name and location as the first
parameter of the method. The second parameter of the $.post method is an array with the

variables, and their values, which will be passed to the script. The third parameter of the $.post

method is a function that is performed if the execution of the script is successful. This function
will be used to know if the contact was added to the database. That happens if the data variable
passed to the function has an "OK" value. In this case, we use the

window.location.reload() method to refresh the web browser window and display new data.

The script that inserts contact info in the database is displayed in the following code sample.

Code Listing 55: insertcontact.php

<?php

 $name = $_POST['name'];
 $email = $_POST['email'];
 $phone = $_POST['phone'];
 $subject = $_POST['subject'];
 $message = $_POST['message'];

 $dbhost = 'localhost';
 $dbuser = 'root';
 $dbpass = 'Netdevserver';
 $database = 'contactinfo';
 $mysqli = new mysqli($dbhost, $dbuser, $dbpass, $database);

if ($mysqli->connect_errno) {
 echo "We're sorry. The website can not connect to the database
";
 echo "Error: MySQL connection failed:
";
 echo "Errno: " . $mysqli->connect_errno . "
";
 echo "Error: " . $mysqli->connect_error . "
";

 exit;
}

 113

$sql = "INSERT INTO contacts (name,email,phonenumber,subject,message)
VALUES ('$name', '$email', '$phone','$subject','$message')";

if ($mysqli->query($sql) === TRUE) {
 echo "OK";
} else {
 echo "Error: " . $sql . "
" . $mysqli->error;
}

$mysqli->close();

?>

This script is similar to the one explained in Chapter 5, except that the values to be inserted in
the contacts database are taken from the $_POST associative array. In this case, the name of

the parameters sent by the $.post method are used as keys to retrieve the corresponding

value for each parameter. These values are passed to a set of variables used later as a part of
the INSERT SQL statement. If data insertion is successful, the echo statement sends "OK" as a

response. Otherwise, the response is an error message.

The result: A functional Personal Contact List Website

At the end, we should get a functional website that looks like the following figure.

 114

Figure 48: Personal Contact List Website

Chapter summary

The purpose of this chapter was gathering all themes discussed previously to turn them into a
simple contact list website. The design for the website divided the homepage into four sections:
a header, intended to show the name of the website; a toolbar, which holds a button intended to
add contacts to the table; a data table, intended to display all contacts stored in the database;
and a footer, which displays some copyright information. Also, a Close button was placed at the
right side of the header section. This kind of design employs a complex programming, so we
used the file inclusion technique, discussed in Chapter 4, to develop this website.

We used the index.php document as the website point of entry. Then, we programmed every
section of the website’s home page in a separate file. After that, we used the require()

statement to include all those files in index.php.

 115

Chapter 7 General Summary

PHP is an open source, general-purpose scripting language oriented for web development. This
language was originally created by Ramsus Lerdorf in 1994, and it was known as Personal
Home Page / Forms Interpreter. The first version of PHP/FI was released in 1995. Later, PHP/FI
2.0 appeared in 1997. PHP is now supported by The PHP Group, and the PHP acronym stands
for PHP: Hypertext Preprocessor. At this time, the current stable release is 7.0.13. The most
important topics about PHP are summarized in the following list.

• PHP is an acronym for PHP: Hypertext Preprocessor.
• PHP is an open source language, free to download and use.
• PHP is executed on the server.
• PHP can generate dynamic page content.
• PHP can connect to a wide range of databases.
• PHP can run on various platforms (Windows, Linux, UNIX, Mac OS X, etc.).
• PHP is compatible with almost all web servers used today (IIS, Apache, etc.).
• PHP is easy for newcomers to learn.

PHP can be deployed in a Windows environment using IIS (Internet Information Services) as a
web server. To perform this deployment, the following requirements should be fulfilled:

• The computer should have a Windows operating system installed and running.
• IIS should be installed and configured.

To install IIS in a Windows 10 computer, you should go to the Programs section of the Control
Panel, and then click on the Turn Windows features on or off link. Next, check the Internet
Information Services checkbox in the Windows Features dialog box, in order to install IIS with
the default features for a web server.

Now, to install PHP in the computer, you should download a zip installation package from this
location for a 32-bit system, or from this location for a 64-bit system. After the download is
complete, you should unpack the zip file in a folder named C:\PHP.

To configure PHP, rename the file php.ini-development to php.ini. Then, you can edit it to
adjust some PHP working parameters to comply with IIS requirements.

As a final step, you should add C:\PHP to the Path system variable, and open the IIS Manager
to set up PHP as the program that will handle all .php web requests coming from any client
within the network.

Now, the installation process can be tested by creating a text file named phpinfo.php in the
website root folder (commonly C:\inetpub\wwwroot). The file should contain the following
programming code: <?php phpinfo(); ?>. Next, type http://127.0.0.1/phpinfo.php into a

web browser to display the PHP installation info.

PHP programming relies on scripts. A script in PHP is a text file that contains pure PHP
programming code, or PHP programming code embedded into HTML, and is executed in the
web server.

http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x86.zip
http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x86.zip
http://windows.php.net/downloads/releases/php-7.1.4-nts-Win32-VC14-x64.zip

 116

As in most programming languages, the main way to store data in a PHP program is by using
variables, which are identifiers intended to hold data dynamically, so that data stored in
variables can change during the execution flow.

Variables in PHP are declared by denoting their names with a leading dollar sign ($), and then

starting with a letter or underscore. Variables can be converted from one data type to another
automatically.

A variable can be available in a certain section of a script, starting from the program in which the
variable is declared. This is known as variable scope. PHP has the following variable scopes:
local, for variables that are available only in the program where they are declared; global, for
variables that can be accessed in any part of the executed program; function parameters, which
are variables available within the function where they’re employed; and static, which are
variables declared inside functions that keep their values between every function call.

PHP also allows you to use constants. A constant is an identifier that holds a simple value and
cannot be changed during the execution of the script. Constants’ identifier names are case
sensitive. The best practices in PHP dictate that constant names should be uppercase.
Constants are defined by the define() function.

PHP uses expressions to perform calculations. A set of symbols are used in order to perform
these calculations. These symbols are called operators, and the identifiers declared between
the operators are called operands. PHP has the following types of operators: arithmetic
operators, which are used to perform operations with numbers; comparison operators, which
are used to check if criteria between two operands are met; logical operators, which are
employed to get a true or a false value depending the logical state of two operands; assignment
operators, which are employed to store the value of an expression into an operand; and
conditional operators, which are employed to perform an inline decision making.

When an expression contains several operators, calculations are performed following a strict
order. This order is known as operator precedence. To explain this precedence, we can classify
operators into the following categories: unary, which are operators preceding a single operand;
binary, which take two operands; ternary, which take three operands, evaluating either the
second or the third depending on the value of the first one; and assignment operators, which
store a value into an operand. Operator precedence is rather complicated. Common operators
in an expression are executed in the following order: increment and decrement, unary,
multiplicative and division, addition and subtraction, relational, equality, bitwise, ternary,
assignment, logical AND, logical XOR, logical OR.

In PHP, we can use sequences of characters stored in variables or directly placed at the right of
a statement. These sequences are called strings. Strings can be delimited either by single or
double quotes. PHP treats strings in a different way depending on how they’re delimited. Every
PHP statement is considered a single-quoted string literal, but when variable names are present
in a double-quoted string, PHP replaces the name of the variable with its contents.

 117

When we need to store several values of similar type, PHP provides us with a data structure
known as an array. We can use this structure instead of declaring many variables. In PHP we
have the following kind of arrays: numeric arrays, which store values that can be accessed
using a numeric index; associative arrays, which use strings as indexes and associate them to
the values stored; and multidimensional arrays, which contain one or more arrays accessing
their values using multiple indexes. An array can be created using the array() function, or by

declaring a variable followed by an index enclosed in brackets.

PHP provides a set of statements to take a course of action based on a condition. These
statements are known as decision-making statements, and they are: if … elseif … else,

which executes a code block when the condition after if statement is true, or the code block

within the elseif statement, if the condition of if statement is false, and the condition of the

elseif statement is true, or executes the code within the else statement in case both

conditions are false; and the switch statement, which executes a block of code depending on

a comparison of equality for an expression with a series of values, placed each one after a case

clause, which also contains the code to be executed if the expression value is equal to the value
associated to this particular case clause.

Looping statements allow us to execute a particular code block repeatedly, either while a certain
condition is met, a specific number of times, or until a series of elements from a data structure
have been all iterated. These looping statements are: for, which loops through a code block a

specified number of times; while, which loops through a code block while a certain condition is

met; do … while, which loops through a code block once, and repeats the execution as long as

the condition established is true; and foreach, which loops through a code block many times as

elements exist in an array. PHP provides two special keywords to be used within a loop: break,

which terminates the execution of a loop prematurely; and continue, which halts the execution

of a loop and starts a new iteration.

PHP lets the user create functions. A function is a piece of code which receives data by using a
set of variables named parameters, then processes this data and returns a value. In PHP, we
have user-defined and built-in functions. A user-defined function is created by the developer by
using the reserved keyword function, followed by the name of the function.

When you need to pass data to a function, you should use a series of identifiers named
parameters. These are a series of identifiers declared after the function name, enclosed in
parentheses. You can declare as many parameters as you need. All these parameters will act
as variables within the function. A function can return a value to the calling program employing
the return statement.

We can set function parameters to have a default value, in case the calling program doesn’t
pass any value to any of them. Default values are defined by placing the desired value at the
right side of the parameter name, leading by an equal assignment operator (=).

A function can be called dynamically by storing its name into a string variable. Then, we can use
this variable as we would the function name itself.

 118

PHP has a large set of built-in functions that can be classified in categories. The most relevant
categories are: array functions, which allow the developer to interact with and manipulate
arrays; date and time functions, which get the date and time from the server in which scripts are
running; string functions, which allow the developer to manipulate strings; character functions,
which check whether a string or character falls into certain class; file system functions, which
access and manipulate the file system; and directory functions, which are used to manipulate
directories.

PHP allows code reusing, which is important for maintaining complex applications with minimal
effort. Code reusing is handled by means of file inclusion. File inclusion is the mechanism used
to insert the content of a PHP file into another one, and it is performed by two functions:
include(), which copies all the text in the specified file into the script, generating a warning

message when a problem occurs; and require(), which is similar to include(), except that it

halts script execution when a problem occurs.

PHP provides a series of functions that help us to manipulate files by doing operations such as
opening, reading, writing and closing a file. The functions fopen(), filesize(), fread(), and

fclose() should be used together, in order to read the contents of a file. On the other hand, if

we want to write text to a file, we need to use fwrite() function instead of fread().

PHP also supports a wide range of Database Management Systems (RDBMS). MySQL is the
database system most commonly used in conjunction with PHP. PHP 7 includes an extension
named mysqli (MySQL improved) which allows you to access MySQL 4.1 and above. For the

purposes of this book, using MySQL with PHP requires that you have an active instance of
MySQL installed in the computer used as a web server, and have the MySQL Workbench utility
installed.

The exercises in this book used a database named contactinfo, which contains a single table
to save contact information. We used the MySQL Workbench utility to create this database. The
exercises explained in this book inserted data and queried the contacts table belonging to the
database. These exercises used the mysqli extension through a class also named mysqli.

This class works in the following way: the constructor (mysqli()) creates a connection to a

MySQL server and uses the property connect_errno to inform if the connection was

successful. In case of a successful connection, we can use the query() method to insert or

retrieve data. Parameterized SQL sentences are also allowed through the statement object,

which binds parameters to data variables using the bind_param() method.

Finally, all themes discussed in this book were gathered and turned into a simple contact list
website. The website divided the homepage in four sections: a header, intended to show the
name of the website; a toolbar, which holds a button intended to add contacts to the table; a
data table, intended to display all contacts stored in the database; and a footer, which displays
some copyright information. We also placed a Close button at the right side of the header
section. This kind of design employs a complex programming, so we used the file inclusion
technique, discussed in Chapter 4, to develop it. We used the index.php document as the
website point of entry. Then, we programmed every section of the website’s homepage in a
separate file and used the require() statement to include all those files in index.php.

 119

General Conclusions

With a large community of developers, and a lot of blogs and websites dedicated to discussing
it, PHP is by far the easiest way to enter into the web development world. Its relative simplicity
for writing programs (scripts) allows the newbies to create code in hours, and for the skilled
programmer, it offers the power of the object-oriented paradigm and structured programming in
one package. Also, its multiplatform compatibility lets us to deploy our applications on a
Windows or a Linux web server, with no changes in code. Furthermore, it’s open source, so we
can use the language in any kind of projects, even commercial projects.

Around the time my company adopted PHP as our primary web programming language, we also
explored other technologies, such as ASP.NET. We realized that the learning curves for those
technologies were huge, and there was a lack of experienced developers in our region.
Because the time to market for our web software products was so short, we chose PHP—and
we didn’t regret it. Our first application prototype was created in 20 minutes using a simple text
editor, and our first product was deployed in almost thirty days, so we can say that this decision
was a great success.

PHP has been constantly upgrading to increase its performance and its features. Today, there’s
a large number of frameworks for PHP that make coding easier and more manageable, and its
OOP style approach has been enhanced, almost like traditional OOP languages such as C# or
Java. The number of database extensions has also been increasing in the latest versions of
PHP, making data access easy. Many important platforms, such as MailChimp®, use PHP for
processing thousands of web requests, creating a huge number of dynamic webpages, handling
thousands of user logins, and even managing millions of email messages.

Although today's web development is a combination of several technologies, many
programmers around the world still choose PHP as their primary programming language, and I
don’t think this will change anytime soon.

	Table of Contents
	The Story behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Who Is This Book For?
	Chapter 1 An Introduction to PHP
	What is PHP?
	Chapter summary

	Chapter 2 Deploying PHP
	Installing PHP in a Windows environment
	Prerequisites
	Installation process
	Setting up IIS
	Installing PHP

	Testing the installation process
	Testing in the local computer
	Testing from a remote computer

	Chapter summary

	Chapter 3 PHP Basics
	Script: The basic concept of PHP
	What is a script?
	Script samples
	The ever-present Hello World
	Displaying current date
	Calling HTML from PHP sample

	Variables
	Declaring and using variables in PHP
	Variable types
	Variable scopes
	Predefined variables

	Constants
	Naming constants
	Defining constants

	Operators
	Arithmetic operators
	Comparison operators
	Logical operators
	Assignment operators
	Conditional operator
	Precedence of operators in PHP

	Strings
	Arrays
	Decision making
	If elseif … else
	Switch statement

	Loops
	Continue and break special keywords

	Chapter summary

	Chapter 4 Functions and File Inclusion
	User-defined functions
	Function definition
	Creating functions
	Employing parameters
	Returning values from a function
	Defining default values for parameters in a function
	Calling functions dynamically

	Built-in functions
	Array functions
	Date and time functions
	String functions
	Character functions
	File system functions
	Directory functions

	File inclusion
	Chapter summary

	Chapter 5 Files and Databases
	Managing Files with PHP
	Reading a file
	Writing text to a file

	Connecting to MySQL databases
	Prerequisites
	Installing MySQL in the local computer
	Using MySQL Workbench to create a database
	The contactinfo database

	Our first database connection
	Inserting a row in the contacts table
	Inserting data using parameters
	Querying the contacts table
	Displaying contacts in a webpage

	Chapter summary

	Chapter 6 A Contact List Website
	Website entry point: index.php
	Creating a basic HTML structure
	Creating the website header
	Creating the website toolbar
	Creating the website footer

	Creating the data table section
	Creating the Add New Contact dialog box
	The result: A functional Personal Contact List Website
	Chapter summary

	Chapter 7 General Summary
	General Conclusions

